Двойная мембрана в клетке

Содержание
  1. Общие характеристики, функции и состав ядерной мембраны / биология
  2. Общие характеристики
  3. функция
  4. обучение
  5. состав
  6. Белки ядерной мембраны
  7. нуклеопорины
  8. Транспортировка через комплекс ядерных пор
  9. Белки внутренней мембраны
  10. Белки наружной мембраны
  11. Белки клинка
  12. Ядерная мембрана у растений
  13. ссылки
  14. Клеточная мембрана
  15. Функции клеточной мембраны
  16. Свойства клеточной мембраны
  17. Строение клеточной мембраны
  18. Состав клеточной мембраны
  19. Белки клеточной мембраны
  20. Цитоплазма и клеточная мембрана
  21. Проницаемость клеточных мембран
  22. Липиды клеточных мембран
  23. Основные функции и особенности строения клеточной мембраны
  24. Строение клеточной мембраны
  25. Основные функции клеточной мембраны
  26. Функции клеточной мембраны (кратко)
  27. Клеточная мембрана | Во всем виноват Эйнштейн..
  28. Клеточная мембрана
  29. Потенциал действия
  30. Выводы
  31. Цитоплазматическая мембрана — Строение и функции мембраны
  32. Строение
  33. Ядро
  34. Развитие ядра
  35. Структура
  36. Цикл пищеварения
  37. Функции мембраны

Общие характеристики, функции и состав ядерной мембраны / биология

Двойная мембрана в клетке

ядерная мембрана, ядерная оболочка, или кардиотек, представляет собой биологическую мембрану, образованную бислоем липидной природы, которая окружает генетический материал эукариотических клеток.

Это довольно сложная конструкция, оснащенная системой точного регулирования, состоящей из двух бислоев: внутренней и внешней. Пространство между двумя мембранами называется перинуклеарным пространством и имеет приблизительную ширину от 20 до 40 нанометров..

Наружная мембрана образует континуум с эндоплазматической сетью. По этой причине в его структуре закреплены рибосомы..

Мембрана характеризуется наличием ядерных пор, которые опосредуют движение веществ изнутри ядра в цитоплазму клетки и наоборот..

Прохождение молекул между этими двумя отсеками довольно многолюдно. РНК и рибосомные субъединицы должны постоянно переноситься из ядра в цитоплазму, тогда как гистоны, ДНК, РНК-полимераза и другие вещества, необходимые для активности ядра, должны импортироваться из цитоплазмы в ядро..

Ядерная мембрана содержит значительное количество белков, которые участвуют в организации хроматина, а также в регуляции генов..

индекс

  • 1 Общая характеристика
  • 2 Функция
  • 3 Обучение
  • 4 Композиция
    • 4.1 Белки ядерной мембраны
    • 4.2 Нуклеопорины
    • 4.3 Транспортировка через комплекс ядерных пор
    • 4.4 Белки внутренней мембраны
    • 4.5 Белки наружной мембраны
    • 4.6 Белки клинка
  • 5 Ядерная мембрана у растений
  • 6 Ссылки

Общие характеристики

Ядерная мембрана является одной из наиболее ярких отличительных черт эукариотических клеток. Это высокоорганизованная двойная биологическая мембрана, которая заключает в себе ядерный генетический материал клетки – нуклеоплазму..

Внутри мы находим хроматин, вещество, образованное ДНК, связанной с различными белками, в основном гистонами, которые обеспечивают эффективную упаковку. Он делится на эухроматин и гетерохроматин.

Изображения, полученные с помощью электронной микроскопии, показывают, что наружная мембрана образует континуум с эндоплазматическим ретикулумом, поэтому на ней также закреплены рибосомы. Аналогично, перинуклеарное пространство образует континуум с просветом эндоплазматического ретикулума.

Якорь на стороне нуклеоплазмы во внутренней мембране, мы находим структуру в виде листа, образованного белковыми нитями под названием «ядерная пластинка».

Мембрана ядра перфорирована рядом пор, которые позволяют регулировать движение веществ между ядерным и цитоплазматическим поведением. Например, считается, что у млекопитающих насчитывается в среднем около 3000 или 4000 пор..

Есть очень компактные массы хроматинов, которые прилипают к внутренней мембране оболочки, за исключением областей, где существуют поры.

функция

Наиболее интуитивной функцией ядерной мембраны является поддержание разделения между нуклеоплазмой – содержимым ядра – и цитоплазмой клетки..

Таким образом, ДНК остается безопасной и изолированной от химических реакций, происходящих в цитоплазме, и может негативно влиять на генетический материал..

Этот барьер дает физическое разделение ядерным процессам, таким как транскрипция, и цитоплазматическим процессам, таким как трансляция.

Селективный транспорт макромолекул между внутренней частью ядра и цитоплазмой происходит благодаря наличию ядерных пор и позволяет регулировать экспрессию генов. Например, с точки зрения сплайсинга РНК перед мессенджером и деградации зрелых мессенджеров.

Одним из ключевых элементов является ядерный лист. Это помогает обеспечить поддержку ядра, в дополнение к предоставлению места крепления для волокон хроматина.

В заключение, мембрана ядра не является пассивным или статическим барьером. Это способствует организации хроматина, экспрессии генов, привязке ядра к цитоскелету, процессам деления клеток и, возможно, другим функциям..

обучение

Во время процессов деления ядра необходимо формирование новой ядерной оболочки, поскольку, в конце концов, мембрана исчезает.

Это сформировано из везикулярных компонентов от грубого эндоплазматического ретикулума. Микротрубочки и клеточные моторы цитоскелета активно участвуют в этом процессе.

состав

Ядерная оболочка образована двумя липидными бислоями, образованными типичными фосфолипидами, с несколькими интегральными белками. Пространство между двумя мембранами называется внутримембранозным или перинуклеарным пространством, которое продолжается светом эндоплазматического ретикулума..

На внутренней стороне внутренней ядерной мембраны имеется характерный слой, образованный промежуточными филаментами, называемыми ядерными пластинками, прикрепленными к белкам внутренней мембраны с помощью гетерохромарина Н.

Ядерная оболочка имеет множество ядерных пор, которые содержат комплексы ядерных пор. Это цилиндрические структуры, состоящие из 30 нуклеопоринов (они будут подробно описаны ниже). С центральным диаметром около 125 нм.

Белки ядерной мембраны

Несмотря на преемственность с сетью, как внешняя, так и внутренняя мембрана представляют группу специфических белков, которые не обнаружены в эндоплазматической сети. Наиболее выдающимися являются следующие:

нуклеопорины

Среди этих специфических белков ядерной мембраны у нас есть нуклеопорины (также известные в литературе как Nups). Они образуют структуру, называемую комплексом ядерных пор, который состоит из ряда водных каналов, которые обеспечивают двунаправленный обмен белков, РНК и других молекул..

Другими словами, нуклеопорины функционируют как своего рода молекулярные «двери», которые очень избирательно опосредуют прохождение разных молекул..

Гидрофобное внутреннее пространство канала исключает определенные макромолекулы в зависимости от размера макромолекулы и уровня ее полярности. Небольшие молекулы, приблизительно менее 40 кДа или гидрофобные, могут пассивно диффундировать через комплекс пор..

Напротив, полярные молекулы, которые больше, нуждаются в ядерном транспортере, чтобы войти в ядро.

Транспортировка через комплекс ядерных пор

Транспортировка через эти комплексы достаточно эффективна. Только 100 молекул гистонов в минуту могут проходить через одну пору.

Белок, который должен быть перенесен в ядро, должен связываться с альфа-импортином. Бета-импортин связывает этот комплекс с внешним кольцом. Таким образом, альфа-импортин, связанный с белком, способен пересекать поровый комплекс. Наконец, бета-импортин диссоциирует от системы в цитоплазме, а альфа-импортин диссоциирует уже внутри ядра..

Белки внутренней мембраны

Другая серия белков специфична для внутренней мембраны. Однако большая часть этой группы из почти 60 интегральных мембранных белков не была охарактеризована, хотя было установлено, что они взаимодействуют с пластинкой и хроматином..

Каждый раз появляется все больше доказательств того, что поддерживает различные и важные функции для внутренней ядерной мембраны. По-видимому, он играет роль в организации хроматина, в экспрессии генов и в метаболизме генетического материала..

Фактически, было обнаружено, что местоположение и ошибочная функция белков, которые составляют внутреннюю мембрану, связаны с большим количеством заболеваний у людей..

Белки наружной мембраны

Третий класс специфических белков ядерной мембраны находится во внешней части указанной структуры. Это очень гетерогенная группа интегральных мембранных белков, которые имеют общий домен под названием KASH.

Белки, обнаруженные во внешней области, образуют своего рода «мост» с белками внутренней ядерной мембраны..

Эти физические связи между цитоскелетом и хроматином, по-видимому, имеют отношение к событиям транскрипции, репликации и механизмам репарации ДНК..

Белки клинка

Последняя группа белков ядерной мембраны образована белками листа, каркас, образованный промежуточными нитями, которые состоят из листов типа А и В. Толщина листа составляет от 30 до 100 нанометров..

Пластинка является важной структурой, которая обеспечивает стабильность ядра, особенно в тканях, которые находятся в постоянном воздействии механических сил, таких как мышечная ткань..

Подобно внутренним белкам ядерной мембраны, мутации в пластине тесно связаны с большим количеством очень разнообразных заболеваний человека..

Кроме того, обнаруживается все больше и больше свидетельств, касающихся ядерной пластинки при старении. Все это подчеркивает важность белков ядерной мембраны в общем функционировании клетки.

Ядерная мембрана у растений

В растительном мире ядерная оболочка является очень важной мембранной системой, хотя она очень мало изучена. Хотя нет точных знаний о белках, составляющих ядерную мембрану у высших растений, были отмечены определенные различия с остальными королевствами.

Растения не обладают последовательностями, гомологичными пластинкам, и вместо центросом именно ядерная мембрана выступает в качестве организующего центра микротрубочек..

По этой причине изучение взаимодействия ядерной оболочки у растений с элементами цитоскелета является предметом соответствующих исследований..

ссылки

  1. Alberts, B. & Bray, D. (2006). Введение в клеточную биологию. Ed. Panamericana Medical.
  2. Эйнард А.Р., Валентич М.А. и Ровасио Р.А. (2008). Гистология и эмбриология человека: клеточные и молекулярные основы. Ed. Panamericana Medical.
  3. Hetzer M. W. (2010). Ядерная оболочка. Перспективы Колд Спринг Харбор в биологии, 2(3), a000539.
  4. Meier, I. (2008). Функциональная организация ядра растения. прыгун.
  5. Росс, М. Х. & Павлина В. (2006). гистология. Липпинкотт Уильямс и Уилкинс.
  6. Welsch, U. & Sobotta, J. (2008). гистология. Ed. Panamericana Medical.
  7. Янг Б., Вудфорд П. и О'Дауд Г. (Ред.). (2014). Wheater. Функциональная гистология: текст и атлас в цвете. Elsevier Health Sciences.

Источник: https://ru.thpanorama.com/articles/biologa/membrana-nuclear-caractersticas-generales-funciones-y-composicin.html

Клеточная мембрана

Двойная мембрана в клетке

Поддержание жизнедеятельности клетки и контроль за ее целостностью осуществляет защитная пленка. Изучение мембран, их функционирования необходим для понимания причин возникновения заболеваний и способах лечения. Глубокое изучение клеточных мембран позволит создавать лекарства, снизить смертность и отыскать механизмы борьбы с болезнями внутри организма человека.

Каждая клетка в организме находится в специальной защитной пленке, которая и называется клеточной мембраной. Она выполняет много функций, благодаря которым поддерживается процесс жизнедеятельности клетки.

Название пленка и мембрана это одно и тоже, заимствованное из мертвого языка – латыни. Фактически это сложная структура, состоящая из двух пленок, которые соединены и имеют ряд свойств. Самое главное – это защита содержимого внутри оболочки и обеспечение возможности доставления внутрь клетки питательных веществ.

Мембрана отвечает за полноценное обеспечение связи клеток друг с другом, и с окружающей средой. Бислой сформирован из липидных молекул, большая часть из которых это фосфолипиды или сложные липиды. Липидная молекула состоит из гидрофильной головки и гидрофобного хвоста. Структура мембраны похожа у многих организмов.

Мембрана включает и разные белки:

  • интегральные (мембрана пронизана насквозь),
  • полуинтегральные (в липидный слой опущен только один из концов),
  • поверхностные (расположены вне клетки или внутри, но прилегают к мембране).

Функции клеточной мембраны

  1. Барьерная или защитная. Мембрана защищает содержимое клетки, создавая своеобразный барьер. Не позволяет проникать вредным веществам через стенки. Контролирует постоянство структуры клетки и оберегает от вредоносных молекул. При этом, в зависимости от ситуации, мембрана может вести себя активно или пассивно.

    Может проявлять активность в выборе или отторжении.

  2. Транспортная. Обеспечивает доставку полезных веществ внутрь клетки, происходит межклеточный обмен полезными веществами и поступает информация извне.
  3. Матричная. Мембрана строго разграничивает клетки,
  4. Механическая.

    Регулирует разграничение клеток между собой, поддерживает правильность их соединения. Здесь основная нагрузка ложится на стенки клетки. У животных активно принимает участие межклеточное вещество.

  5. Энергетическая. Через белок, содержащийся в клеточной мембране происходит процесс энергообмена.
  6. Рецепторная.

    Основную роль выполняют белки, которые выполняют роль рецепторов в клеточной мембране. Они отвечают за доставку сигналов в клетку от гормонов и нейромедиаторов. Это позволяет поддерживать стабильный гормональный фон и способствует беспрепятственному прохождению нервных импульсов.

  7. Ферментативная.

    Часть белков принимают участие в данной функции. Так, например, происходит синтез в эпителии кишечника.

  8. Маркировочная. Антиген. Присутствующий на мембране, действует как маркер-выделитель. Благодаря ему происходит распознавание клетки. Роль таких выделителей исполняют гликопротеины, играющие роль своеобразных антенн.

    У каждой клеточки свое обозначение, по которым происходит объединение в структуры или отторжение как чужеродных и вредных.

Клеточный обмен может происходить 3 способами

  1. Фагоцитоз. Обмен внутри клеток, главные участники которого – фагоциты. Они захватывают полезные вещества и перерабатывают их.
  2. Пиноцитоз. Здесь активной является сама мембранная клетка, которая специальными ловит капельку жидкости. Формируется небольшой пузырек, который постепенно втягивается в мембрану.
  3. Экзоцитоз. Прямо противоположный процесс, при котором из клетки уходит жидкость через стенки мембраны.

Свойства клеточной мембраны

Клеточные мембраны это не стабильные субстанции, а динамичные текучие образования. Молекулы липидов и белков не связаны между собой ковалентными связями, поэтому они способны быстро передвигаться внутри мембраны. Динамичность мембран проявляется в их способности легко расширяться, сужаться, восстанавливаться после повреждений.

Мембраны у разных биологических видов разные. Прежде всего отличаются по химическому составу. Также отличаются по количеству белков, липидов, по характеру имеющихся в них рецепторов. Каждый тип индивидуален, что определено гликопротеинами, участвующими в распознании факторов внешней среды и узнавании родственных клеток.

В мембранах находятся рецепторы, переносчики электронов, преобразователи энергии, ферментные белки.

Одно из главных свойств мембраны – выборочная или направленная проницаемость. Благодаря этой способности молекулы и ионы проникают через пленку стенок с разной скоростью. Чем крупнее молекула, тем медленнее ее скорость проникновения. Самая большая проникающая способность у воды и растворенных в ней газах. Ионы проходят через мембрану с меньшей скоростью.

Строение клеточной мембраны

Клеточная мембрана состоит из липидов

  • Фосфолипиды (комбинация жиров и фосфора)
  • Гликолипиды (комбинация жиров и углеводов)
  • Холестерол

Фосфолипиды и гликолипиды состоят из гидрофильной головки и двух длинных гидрофобных хвостиков.

 Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

Внутри клеточной мембраны находятся разнообразные белки. Их окружают аннулярные липиды (структурированные жиры, оберегают белок и помогают ему функционировать).

Состав клеточной мембраны

В мембране имеется три слоя, главным из которых является однородный жидкий билипидный слой. Окружают его белки, благодаря которым обеспечивается проницаемость клеточных мембран. Фосфолипиды – фундамент мембраны, составляет до 90% от общего количества липидов.

Для проникновения сквозь мембрану таких веществ как калий и натрий, существуют специальные ионные каналы клеточных мембран.

Белки клеточной мембраны

Для клетки жизненно важно взаимодействовать как с соседними клетками, так и с окружающим миром. Некоторые микроскопические молекулы или потоки света беспрепятственно проникают сквозь мембрану, взаимодействуя с белками напрямую.

При этом в клетке запускаются химические реакции выработки новых белков или появляется новая программа жизнедеятельности клетки. Пример ответных реакций это: деление клетки, выделять ферменты или гормоны. Клетка может запустить механизм самоуничтожения.

Принцип у всех один – внутриклеточный запуск каскада превращений химических реакций.

Чтобы клетка могла функционировать продолжительное время, в нее должны поступать питательные вещества извне. Сигналы, достигающие внутриклеточного пространства, должны правильно обрабатываться и выдавать ответную реакцию. Для этого на поверхности мембраны есть специальные рецепторы: ионные каналы, порины, транспортеры, молекулярные моторы, структурные белки.

Появление гормонов или сигнальных молекул снаружи клетки вызывает в рецепторных белках сигнал. Самый яркий представитель – рецептор инсулина, который отвечает за снабжение клетки глюкозой.

Транспорт ионов происходит через ионные каналы, которые поддерживают разницу в их концентрации между наружной средой и внутренней. Натриевые и калевые каналы отвечают за передачу нервного импульса. Порины и транспортеры отвечают за перенос воды и определенных молекул сквозь мембрану.

Структурные белки поддерживают структуру мембраны и взаимодействуют с остальными белками.

Кроме всего прочего есть еще внутриклеточные пути передачи сигналов при помощи каскадов реакций.

Цитоплазма и клеточная мембрана

Цитоплазма – это часть клетки, которая находится между плазматической мембраной и ядром. Выделяют составляющие:

  • гиалоплазму (основа цитоплазмы),
  • органоиды (постоянные составляющие)
  • включения (временные составляющие).

Химический состав цитоплазмы

До 90% занимает вода, остальное – всевозможные соединения органики и неорганических веществ. Цитоплазма имеет щелочную реакцию. Отличительная особенность цитоплазмы – циклоз или постоянное движение.

Заметить это можно по перемещению внутри клетки хлоропластов. Жизнедеятельность клетки напрямую зависит от движения цитоплазмы. Прекращение движения ведет к гибели клетки, прекращению ее жизнедеятельности.

Гиалоплазма или цитозоль – коллоидный раствор, который не имеет цвета. По составу напоминает густую слизь. В этой жидкости протекают процессы, которые обеспечивают обменные процессы веществ. Благодаря цитозоли осуществляется связь между ядром и всеми органоидами

.

В свою очередь подразделяется на две формы, которые способны менять свое физическое состояние.

  • золь – разжиженная,
  • гель – тягучая.

Цитоплазма объединяет все внутренние составляющие клетки в единое целое. Ее среда — это место где протекают физиологические и биохимические клеточные процессы. Цитоплазма отвечает за жизнедеятельность и функционирование органоидов.

Проницаемость клеточных мембран

Проницаемость – это важнейшая функция защитного слоя клетки. Благодаря ей происходит движение внутрь и извне клетки многих метаболитов. Постоянно поддерживается форма клетки, баланс в ней веществ, осуществляется проведение нервного импульса, поддерживается жизнеспособность клетки.

Низкомолекулярные жирорастворимые вещества, такие как глицерин, спирты, мочевина могут беспрепятственно самостоятельно проникать через мембранную оболочку. Это лишь малая часть переносимых веществ, называется простая диффузия. Сложное перемещение называется транслокация и невозможно без дополнительных транспортных систем.

Есть предположение, что системы-переносчики состоят из белков или липопротеидов, а также ряд других компонентов. Переносчик или система сначала связывает переносимое вещество, а потом доставляет его через мембрану внутрь клетки.

Выделяют также неподвижных переносчиков, которые не перемещаются внутри мембранной оболочки, а являются своеобразным туннелем или каналом.

Выделяют также и вторичную транслокацию – переносчик осуществляет связь с переносимым веществом путем невалентных взаимодействий. Выделяют 3 вида:

  1. Облегченная диффузия (унипорт) – механизм переноса не зависит от переноса веществ в клетку или из нее. Этим способом переносится глюкоза в эритроциты.
  2. Котранспоорт (симпорт) – совместный транспорт двух или более веществ в одном направлении.
  3. Противотранспорт – доставка веществ в одном направлении соотносится с движением других частиц в противоположном направлении. Для этого вида транспорта требуется много энергии, которая образуется за счет сопряжения вторичной транслокации с ферментативными реакциями разрыва или образования химических связей.

Липиды клеточных мембран

Клеточная мембрана состоит из белков и липидов, основу которых составляют фосфолипиды. Фосфолипиды занимают значительную часть — 40-90% всех липидов в мембранной оболочке.

Липиды – это амфипатические молекулы, самостоятельно формирующие бислои.

Липиды имеют особенность: растворяются только в растворителях на органической основе и совсем не подвержены растворению в воде. Клеточная мембрана имеет несколько видов липидов: фосфолипиды, холестерол, гликолипиды.

Строение клеточной мембраны до конца не изучено. Происходит постоянное изучение и составление моделей состава мембраны. В одной – мембрана характеризуется как липидный двойной слой.

В этом слое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой.

Полярные группы липидов находятся на внешней поверхности бислоя.

Изучение клеточных мембран перспективное направление в науке. Возможно, с полным пониманием механизмов, происходящих внутри клетки, позволит продлить жизнь. Может быть удастся найти ключик к долголетию.

Источник: https://karatu.ru/kletochnaya-membrana/

Основные функции и особенности строения клеточной мембраны

Двойная мембрана в клетке

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Строение клеточной мембраны

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.

Строение клеточной мембраны

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон.

Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды.

Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде.

Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу.

Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица.

Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам).

Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

ФункцияОписание
Защитный барьерОтделяет внутренние органеллы клетки от внешней среды
РегулирующаяПроизводит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация)Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая– Накопление и трансформация энергии;- световые реакции фотосинтеза в хлоропластах;- Всасывание и секреция.
Рецепторная (информационная)Участвует в формировании возбуждения и его проведения.
ДвигательнаяОсуществляет движение клетки или отдельных ее частей.

Оцените, пожалуйста, статью. Мы старались:) (19 4,42 из 5)
Загрузка…

Источник: https://animals-world.ru/naruzhnaya-kletochnaya-membrana/

Клеточная мембрана | Во всем виноват Эйнштейн..

Двойная мембрана в клетке

Во множестве статей о воде упоминается отрицательные значения ОВП внутренних жидкостей организма и энергия клеточных мембран (жизненная энергия организма).

Попытаемся разобраться о чём собственно речь и понять смысл этих утверждений с научно-популярной точки зрения.

Многие понятия и описания будут даны в сокращённом виде, а более полную информацию можно получить в Википедии или по ссылкам указанным в конце статьи.

Клеточная мембрана

(Или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и внешней средой.

Клеточная мембрана настолько избирательна, что без её разрешения ни одно вещество из внешней среды не сможет даже случайно проникнуть в клетку. В клетке нет ни единой бесполезной, ненужной молекулы.

Выходы из клетки также тщательно контролируются. Работа клеточной мембраны является существенной и не допускает даже малейшей ошибки.

Внедрение вредного химического вещества в клетку, снабжение или выделение веществ в избыточном количестве или сбой выделения отходов приводит к гибели клетки.

Свободные радикалы атакуют

Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств.

Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход.

Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё.

При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается.

Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

Осуществление генерации и проведения биопотенциалов. С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн».

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей.

Это же позволяет иммунной системе распознавать чужеродные антигены.

Потенциал действия

Потенциал действия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала.

По сути своей представляет электрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны.

Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов.

 Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована — её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности — бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью — её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны.

Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка -70..-90 мВ).

 Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы.

Снаружи — на порядок больше ионов натрия, кальция и хлора, внутри — ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов.

Надо понимать, что речь идёт именно о заряде поверхности мембраны — в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на поведении потенциалзависимых натриевых (Na+) и калиевых (K+) каналов.

Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K+ — ток возвращает потенциал мембраны к исходному уровню.

Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: у Na+ каналов основных состояний три — закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K+ каналов два — закрытое и открытое.

Выводы

1. ОВП внутриклеточной жидкости действительно имеет отрицательный заряд

2. Энергия клеточных мембран имеет отношение к скорости передаче нервного сигнала и мнение о «подзарядке» внутриклеточной жидкости водой с ещё более отрицательным ОВП кажется мне сомнительным. Однако, если предположить что по пути до клетки вода изрядно потеряет ОВП-потенциал, то у сего утверждения появляется вполне практический смысл.

3. Нарушение работы мембраны вследствие неблагоприятной среды приводит к гибели клетки

http://www.origins.org.ua/page.php?id_story=687
http://subscribe.ru/archive/science.health.foods/200507/06070504.html

Источник: http://www.koshcheev.ru/2012/04/01/kletochnaya-membrana/

Цитоплазматическая мембрана — Строение и функции мембраны

Двойная мембрана в клетке

Последнее обновление – 27 июля 2017 в 16:11

Время на чтение: 4 мин

Каждый организм человека, либо животного состоит из миллиардов клеток. Клетка представляет собой сложный механизм, выполняющий определенные функции. Из субъединиц состоят все органы и ткани.

Система имеет цитоплазматическую мембрану, цитоплазму, ядро, также ряд органелл. Ядро разграничено с органеллами внутренней пленочкой. Все вместе обеспечивает жизнь тканям, а также позволяет осуществлять метаболизм.

Важную роль в функционировании играет цитоплазматическая плазма лемма или мембрана.

Само название наружная цитоплазматическая мембрана произошло от латин membrana или по другому кожица. Это разграничитель пространства между клеточными организмами.

Гипотезу строения выдвинули уже в 1935 г. В 1959 г. В. Робертсон пришел к выводу, что мембранные оболочки устроены по одному принципу.

Вследствие большого количества накопленной информации, полость приобрела жидко-мозаичную модель конструкции. Сейчас она считается признанной всеми. Именно наружная цитоплазматическая мембрана образует внешнюю оболочку единиц.

Строение

Итак, что такое плазма лемма?

Представляет собой тоненькую пленочку разграничивающую прокариоты с внутренней средой. Разглядеть ее можно только в микроскоп. В строение цитоплазматической мембраны входит би слой, который служит основой.

Би слой — это двойная прослойка, состоящая из белков и липидов. Также есть холестерол и гликолипиды, обладают амфипатричностью.

Что это значит?

Жировой организм имеет биполярную головку и гидрофильный хвостик. Первая обусловлена боязнью воды, а второй ее поглощением. Группа фосфатов имеет наружное направление от пленки, вторые направлены друг на друга.

Таким образом, происходит формирование биполярного липидного слоя. Липиды обладают высокой активностью, могут перемещаться в своем монослое, редко переходить в другие области.

Полимеры делятся на:

  • наружные;
  • интегральные;
  • пронизывающие плазма лемму.

Первые находятся только на поверхностной части пазухи. Держатся за счет электростатики с биполярными головками липидных элементов. Удерживают питательные ферменты.

Интегральные внутри, они встроены в саму структуру оболочки, соединения меняют свое местоположение за счет движения эукариот. Служат своеобразным конвейером, выстроены так, что по ним идут субстраты, продукты реакции.

Белковые соединения пронизывающие макрополость имеют свойства образования пор для поступления питательных элементов в организм.

Ядро

В любой единице есть ядро, это ее основа. Цитоплазматическая мембрана также имеет органеллу, строение которого будет описано далее.

Ядерная структура включает пленку, сок, место сборки рибосом и хроматин. Оболочка разделена около ядерным пространством, оно окружено жидкостью.

Функции органеллы делятся на две основных:

  1. замыкание структуры в органелле;
  2. регулирование работы ядра и жидкого содержимого.

Ядро состоит из пор, каждая обусловливается наличием тяжелых поровых сочетаний. Их объем может говорить об активной двигательной способности эукариотов. Например, высокая активность незрелых содержит большее количество поровых областей. Ядерным соком служат белки.

Полимеры представляют соединение матрикса и нуклеоплазмы. Жидкость содержится внутри ядерной пленки, обеспечивает работоспособность генетического содержимого организмов. Белковый элемент выполняет защиту и прочность субъединиц.

В самом ядрышке созревают рибосомальные РНК. Сами гены РНК находятся на определенной области нескольких хромосом. В них происходит формирование маленьких организаторов. Внутри создаются сами ядрышки. Зоны в митозных хромосомах представлены сужениями, название вторичные перетяжки. При исследовании электроникой различают фазы фиброзного и грануляционного происхождения.

Развитие ядра

Другое обозначение фибриллярный, происходит из белковых и огромных полимеров-предыдущих версий р-РНК. В дальнейшем они образуют меньшие по размеру элементы зрелой р-РНК. Когда фибрилла созревает, она становится зернистой по структуре или рибонуклеопротеиновой гранулой.

Входящий в строение хроматин обладает окрашивающими свойствами. Присутствует в нуклеоплазме ядра, служит формой интерфазы жизнедеятельности хромосом. Состав хроматина, это нити ДНК и полимеры. Вместе они составляют комплекс нуклеопротеидов.

Гистоны выполняют функции организации пространства в структуре ДНК-молекулы. Дополнительно хромосомы включают органические вещества, ферменты, содержащие полисахариды, частицы металлов. Хроматин делится на:

  1. эухроматин;
  2. гетерохроматин.

Первый обусловлен низкой плотностью, поэтому считать генетические данные с таких эукариотов невозможно.

Второй вариант обладает компактными свойствами.

Структура

Сама конституция оболочки неоднородна. За счет постоянных движений на ней появляются наросты, выпуклости. Внутри это обусловлено движениями макромолекул и их выходом в другой слой.

Поступление самих веществ происходит 2 путями:

Фагоцитоз выражается во впячивании твердых частиц. Пиноцитозом называют выпуклости. Путем выпячивания, края областей смыкаются захватив жидкость между эукариотами.

Пиноцитоз осуществляет механизм проникновения соединений внутрь оболочки. Диаметр вакуоли составляет от 0,01 до 1,3 мкм. Далее вакуоль начинает погружение в цитоплазменный слой и от шнуровку. Связь между пузырьками играет роль транспортировки полезных частиц, расщеплении ферментов.

Цикл пищеварения

Весь круг пищеварительной функции разделяется на следующие этапы:

  1. попадание компонентов в организм;
  2. распад ферментов;
  3. попадание в цитоплазму;
  4. выведение.

Первая фаза подразумевает поступление веществ в тело человека. Далее они начинаются распадаться при помощи лизосом. Разделенные частички проникают в цитоплазменное поле. Непереваренные остатки просто выходят наружу естественным способом. Впоследствии пазуха становится плотной, начинается превращение в зернистые гранулы.

Функции мембраны

Итак, какие же функции она выполняет?

Главными будут:

  1. защитная;
  2. переносная;
  3. механическая;
  4. матричная;
  5. перенос энергии;
  6. рецепторная.

Защита выражается в барьере между субъединицей и внешней средой. Пленка служит регулятором обмена между ними. В результате последний может быть активным, либо пассивным. Происходит избирательность необходимых веществ.

При транспортной функции через оболочку передаются соединения от одного механизма к другому. Именно этот фактор влияет на доставку полезных соединений, выведение продуктов метаболизма и распада, секреторные компоненты. Вырабатываются градиенты ионного характера, благодаря чему идет поддержка ph и уровень концентрации ионов.

Последние две миссии относятся к вспомогательным. Работа на матричном уровне направлена на правильное расположение белковой цепочки внутри полости, их грамотное функционирование. За счет механической фазы клетка обеспечена в автономном режиме.

Перенос энергии происходит в результате фотосинтеза в зеленых пластидах, дыхательных процессов в клеточках внутри полости. В работе участвуют также белки. За счет нахождения в мембране белки снабжают макроклетку способностью воспринимать сигналы. Импульсы переходят от одной клетки-мишени к остальным.

К особым свойствам мембраны относят генерацию, осуществление биопотенциала, распознавание клеток, а то есть маркировка.

Источник: https://GemoParazit.ru/raznoe/tsitoplazmaticheskaya-membrana

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: