Движение воды в корне

Как происходит водный обмен у растений: процессы и движение воды по растениях

Движение воды в корне

Без воды ни одно растение не смогло бы существовать. Как вода попадает в растение и за счет какой силы проникает в каждую клетку организма?

Процессы, проходящие в водной среде

Наука не стоит на месте, поэтому данные о водном обмене растений постоянно дополняются новыми фактами. Л.Г. Емельянов на основании имеющихся данных разработал ключевой подход к пониманию водного обмена растений.

Он поделил все процессы на 5 этапов:

  1. Осмотический
  2. Коллоидно-химический
  3. Теромодинамический
  4. Биохимический
  5. Биофизический

Данный вопрос продолжается активно изучаться, поскольку водный обмен непосредственно связан с водным статусом клеток. Последнее в свою очередь является показателем нормальной жизнедеятельности растения. Некоторые растительные организмы на 95% состоят из воды. В высушенном семени и спорах содержится 10% воды, в этом случае происходит минимальный метаболизм.

Без воды в живой организме не будет протекать ни одной реакции обмена, вода необходима для связи всех частей растения и координации работы организма.

Вода находится во всех частях клетки, в частности, в клеточных стенках и мембранах, составляет большую часть цитоплазмы. Без воды не могли быть существовать коллоиды и молекулы белка. Подвижность цитоплазмы осуществляется за счет большого содержания воды. Также жидкая среда способствует растворению веществ, которые попадают в растение, и разносит их во все части организма.

Вода необходима для следующих процессов:

  • Гидролиз
  • Дыхание
  • Фотосинтез
  • Другие окислительно-восстановительные реакции

Именно вода помогает растению адаптироваться к внешней среде, сдерживает негативное воздействие перепадов температуры. Кроме того, без воды травянистые растения не могли бы поддерживать вертикальное положение.

Двигатель жидкости

Вода поступает в растение из почвы, ее поглощение осуществляется с помощью корневой системы. Чтобы произошел водный ток, в работу вступают нижний и верхний двигатели.

Энергия, которая тратится на передвижение воды равняется сосущей силе. Чем больше растение поглотило жидкости, тем выше по значению будет водный потенциал.

Если воды недостаточно, то клетки живого организма обезвоживаются, водный потенциал уменьшается, а сосущая сила увеличивается. Когда появляется градиент водного потенциала, вода начинает циркулировать по растению.

Его возникновению способствует сила верхнего двигателя.

Верхний концевой двигатель работает независимо от корневой системы. Механизм работы нижнего концевого двигателя можно можно увидеть рассмотрев процесс гуттации.

Если лист растения насыщен водой, а влажность воздуха окружающей среды повышена, то испарение происходить не будет.

При этом с поверхности будет выделяться жидкость с растворенными в ней веществами, будет происходить процесс гуттации. Такое возможно, если корнями воды поглощается больше, чем успевает испаряться листьями.

Гуттацию видел каждый человек, она зачастую происходит ночью или утром, при высокой влажности воздуха.

Гуттация характерна для молодых растений, корневая система которых развивается быстрей, чем надземная часть.

Капли выходят наружу через водяные устьица, чему способствует корневое давление. При гуттации растение теряет минеральные вещества. При этом оно избавляется от лишних солей или кальция.

Второе подобное явление – плач растений. Если к свежему срезу побега приложить стеклянную трубку, по ней будет двигаться жидкость с растворенными минеральными веществами. Происходит это, поскольку от корневой системы вода движется только в одну сторону, такое явление называется корневым давлением.

Движение воды по растению

На первом этапе корневая система поглощает воду из почвы. Водные потенциалы действуют под разными знаками, что приводит к движению воды в определенном направлении. К разности потенциалов приводит транспирация и корневое давление.

В корнях растений есть два пространства, которые не зависят друг от друга. Называются они апопласта и симпласта.

Апопласт – свободное место в корне, которое состоит из сосудов ксилемы, оболочек клеток и межклеточного пространства.

Апопласт в свою очередь разделен еще на два пространства, первое располагается до эндодермы, второе после нее и состоит из сосудов ксилемы.

Эндодрема выполняет роль барьера, чтобы воды не переходила на пределы своего пространства. Симпласт – протопласты всех клеток объединенные частично проницаемой мембраной.

Вода проходит следующие этапы:

  1. Полупроницаемая мембрана
  2. Апопласт, частично сипласт
  3. Сосуды ксилемы
  4. Сосудистая система всех частей растений
  5. Черешки и листовые влагалища

По листу воды двигается по жилкам, они имеют ветвистую систему. Чем больше жилок имеется на листе, тем легче воды двигается по направлению к клеткам мезофилла. в данном случае количество воды в клетке уравновешено. Сосущая сила позволяет передвигаться воде от одной клетки к другой.

Растение погибнет, если ей будет недоставать жидкости и связано это не с тем, что в ней протекают биохимические реакции. Имеет значение физико-химический состав воды, в которой происходят жизненно важные процессы. Жидкость способствует появлению цитоплазматических структур, которые не могут существовать вне этой среды.

Вода образует тургор растений, поддерживает постоянную форму органов, тканей и клеток. Вода является основой внутренней среды растения и других живых организмов.

Больше информации можно узнать из видео.

Источник: http://MegaOgorod.com/atricle/1927-kak-proishodit-vodnyy-obmen-u-rasteniy-processy-i-dvizhenie-vody-po-rasteniyah

Как вода движется по растениям вверх?

Движение воды в корне

Хотя представители флоры могут абсорбировать воду всеми частями тела, основным её источником является почва. Но как она попадает от корня к вершине дерева, высотой с десятиэтажный дом? У растений нет мышц, они не могут качать жидкость по системе кровообращения.

Тем не менее, вода движется по растениям вверх через клеточные стенки между протопластом клеток, через плазмодесмы (цитоплазматические мостики), через плазматические мембраны, а также через соединённые между собой проводящие элементы, распространённые по всему растению.

Сначала вода входит в корни, потом перемещается по ксилеме – внутренней проводящей ткани растения. Она поднимается, преодолевая силу тяжести Земли, благодаря двум двигателям: нижнему – корневому давлению и верхнему – испарению воды, и покидает растение в парообразном состоянии главным образом через устьица листьев (транспирация).

Большую часть пути наверх молекулы воды проходят по ксилеме. Например, по проводящим путям секвойи раствор может подниматься на высоту до 100 м. роль в передвижении воды вверх принадлежит притягивающей силе, возникающей в результате испарения. При этом молекулы воды сцепляются водородными связями и движутся по стенкам трахеид и сосудов ксилемы (адгезия).

Части растения, участвующие в подъёме воды

Осмос усиливается аквапоринами

Вода в корневую систему поступает в зоне всасывания, через корневые волоски. Механизмы проникновения её в клетки подчиняются общим законом транспорта воды через плазмалемму. Если одиночную клетку поместить в воду, то концентрация ионов внутри ячейки будет больше, чем снаружи неё. И вода станет двигаться в клетку путём осмоса.

Однако скорость осмоса через мембрану ограничена. Долгое время учёные не могли понять, как вода может двигаться быстрее, чем предусматривает скорость осмоса.

Теперь мы знаем, что осмос усиливается мембранными водными каналами, которые формируют интегральные мембранные протеины, называемые аквапоринами. Эти каналы есть в клетках животных и растений.

Они проходят через мембраны вакуолей и клеточные мембраны и обеспечивают объёмный поток жидкостей.

Мембранные водные каналы ускоряют движение воды по ксилеме, обеспечивают постоянство водного баланса клетки, но они не способны изменить направление потока.

Вода движется по растениям вверх благодаря разности собственного потенциала

Направленное движение воды через плазмалемму обеспечивает разность потенциалов воды в корне и на поверхности устьиц. Потенциал воды – это вид свободной энергии.

Именно градиент водного потенциала является решающей силой в определении направления движения жидкости. Жидкость движется от места большей концентрации к тому месту, где она меньше.

Потенциал воды измеряется в единицах, называемых мегапаскалями (МПа).

Корневое питание растения

Как образуется водный потенциал?

Клеточные стенки сдерживают внутреннее давление клетки, когда вода наполняет её. Если клетку поместить в гипертонический раствор (с очень высокой концентрацией сахарозы), вода будет выходить из клетки, а клеточное давление упадёт. Клеточная мембрана отходит от клеточной стенки по мере уменьшения объёма клетки. Когда давление падает до 0, большинство растений вянут.

Тургор и плазмолиз в клетке растений

Изменение размера тургора можно предсказать путём вычисления потенциала воды в клетке и окружающем растворе. Водный потенциал имеет две составляющие:

  • физические силы, такие как гравитация и давление на клеточную стенку;
  • концентрация растворённого вещества внутри клетки и снаружи.

Вода всегда движется в направлении более низкого потенциала воды. Например, водопад движется вниз, потому что гравитация является для него основным фактором, а потенциал в нижней части водопада ниже, чем в верхней.

На уровне клетки вклад гравитации в потенциал воды настолько мал, что обычно не входит в расчёты, если не рассматривать очень высокое дерево. Тургорное давление (давление на клеточные стенки) называется потенциалом давления. Как только увеличивается тургор, увеличивается и потенциал давления.

Концентрация растворённых веществ также определяет потенциал воды и называется потенциалом растворённого вещества. В чистой воде он нулевой. Когда в ней растворяют вещества, молекулы воды образуют с ними водородные связи. Становится меньше свободных молекул воды, что уменьшает водный потенциал. Раствор с большей концентрацией веществ имеет меньший потенциал.

Общий водный потенциал растительной клетки – это сумма потенциала её давления и потенциала растворённого вещества. Когда общий потенциал энергии воды внутри и снаружи клетки одинаковый, то вода не движется.

Источник: https://tvoiklas.ru/voda/

Проводящие ткани растений. Их строение, функции и месторасположение

Движение воды в корне

Проводящая ткань — одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Эволюция проводящих тканей. Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу.

При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений.

Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи — представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений — до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды — одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их — около 1мм, но может быть 4-7мм (сосна).

Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки.

Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.

Общность строения трахей и трахеид объясняется единой функцией. По трахеям и трахеидам идет восходящее движение минерализованной воды от корней в надземную часть растения. Подробнее про поглощение  воды корнем.

Строение проводящей ткани растений

Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки — продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц.

Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки.

Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.

Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

СтруктураРасположениеЗначение
Ксилема – проводящая ткань, состоит из полых трубок – трахеид и сосудов с уплотненной клеточной оболочкой.Древесина (ксилема), внутренняя часть дерева, которая находится ближе к осевой части, у травяных растений – больше в корневой системе, стебле.Восходящее движение воды и минеральных веществ от почвы в корни, листья, соцветия.
Флоэма имеет клетки-спутницы и ситовидные трубки, которые построены из живых клеток.Луб (флоэма) расположен под корой, формируется вследствие деления клеток камбия.Нисходящее движение органических соединений от зеленых, способных к фотосинтезу частей в стебель, корень.

Где находится проводящая ткань у растений

Если сделать поперечный срез дерева, можно увидеть несколько слоев. Вещества перемещаются по двум из них: по древесине и в лубе.

Луб (отвечает за нисходящее движение) находится под корой и при делении инициальных клеток к лубу отходят элементы оказавшиеся снаружи.

Древесина образуется из клеток камбия, что отошли к центральной части дерева и обеспечивает восходящий ток.

 Роль проводящей ткани в жизни растения

  1. Перемещение растворенных в воде минеральных солей, поглощенных с почвы в стебель, листья, цветы.
  2. Транспорт энергии от фотосинтезирующих органов растения в иные участки: корневую систему, стебли, плоды.
  3. Равномерное распределение фитогормонов в организме, что способствует гармоничному росту и развитию растения.
  4. Радиальное перемещение веществ в остальные ткани, к примеру, в клетки образовательной ткани, где идет интенсивное деление. Для такого рода транспорта необходимы также передаточные клетки с множественными выступами в мембране.
  5. Проводящие ткани делают растения более гибкими и устойчивыми к внешним воздействиям.
  6. Сосудистая ткань представляет собой единую систему, которая объединяет все органы растений.

Оцените, пожалуйста, статью. Мы старались:) (27 4,48 из 5)
Загрузка…

Источник: https://animals-world.ru/provodyashhaya-tkan-rastenij/

Транспирация у растений – Сайт по биологии

Движение воды в корне

  • Транспирация – это регулируемый физиологический процесс движения воды|воды по органам|органам растительного организма, завершающийся её потерей через испарение.

    Знаете ли вы? Слово «транспирация» происходит от двух латинских слов: trans – через и spiro – дыхание, дышать, выдыхать. Дословно термин переводится как выделение пота, потение, испарина

    . Чтобы понять, что такое транспирация на примитивном уровне, достаточно осознать, что жизненно необходимая для растения вода, извлечённая из земли|земли корневой системой, должна каким-то образом попасть к листьям, стеблям|стеблям и цветам.

    В процессе этого движения большая|большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.

    Таким образом, под влиянием атмосферных факторов запасы воды|воды в надземных органах|органах растения постоянно расходуются и, следовательно, должны всё время пополняться за счёт новых поступлений.

    По мере испарения воды|воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней.

    Таким образом, главный «двигатель» тока|тока воды|воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощённо, работают как маленькие насосы.

    Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды|воды из почвы корнями, подъем|подъём её к надземным органам|органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.

    Когда в результате появления большого количества листьев и повышения температуры окружающей среды|среды вода как бы начинает высасываться из растения самой|самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.

    Какую роль выполняет транспирация в физиологии растений

    Процесс транспирации играет огромную роль в жизни растений.

    Прежде всего, следует понимать, что именно транспирация обеспечивает растениям защиту от перегрева.

    Если в яркий солнечный день мы измерим|измерим у одного и того же растения температуру здорового и увядшего листа, разница может составлять до семи градусов, причём если увядший лист на солнце может оказаться горячее|горячее, чем окружающий воздух, то температура транспирирующего листа обычно бывает на несколько градусов ниже! Это говорит о том, что проходящие в здоровом листе процессы транспирации позволяют ему самостоятельно охлаждать себя, в противном случае лист перегревается и погибает.

    Важно! Транспирация является гарантом важнейшего процесса в жизнедеятельности растения – фотосинтеза, который лучше всего происходит при температуре от 20 до 25 градусов тепла. При сильном повышении температуры, в связи с разрушением хлоропластов в клетках растения, фотосинтез сильно затрудняется, поэтому не допускать подобного перегрева для растения жизненно важно.

    Кроме того, движение воды|воды от корней к листьям растения, непрерывность которого обеспечивает транспирация, как бы соединяет всё|все органы|органы в единый организм, и чем сильнее транспирация, тем активнее развивается растение.

    Значение транспирации состоит и в том, что у растений основные питательные вещества могут проникнуть в ткани именно с водой, поэтому чем выше продуктивность транспирации, тем быстрее надземные части растений получают растворенные|растворённые в воде минеральные и органические соединения.

    Наконец, транспирация является той удивительной силой, которая может заставить воду подняться внутри растения по всей его высоте, что имеет огромное значение, например, для высокорослых деревьев, верхние листочки которых благодаря рассматриваемому процессу могут получать необходимое количество влаги и питательных веществ.

  • Виды транспирации

    Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган|орган растения является основным в процессе транспирации.

    Итак, лист состоит из следующих тканей:

  • Сначала вода начинает испаряться с поверхности основной ткани клеток.

    В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды|воды затрудняется, что позволяет растению значительно экономить воду.

    Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

    Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остаётся почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

    Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды|воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

    Кутикулярная

    Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды|воды. Когда устьица закрыты, кутикулярная транспирация особенно важна.

    Интенсивность этого вида транспирации зависит от толщины|толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины.

    Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

    Описание процесса транспирации

    На процесс транспирации существенное влияние оказывают несколько значимых факторов.

    Факторы влияющие на процесс транспирации

    Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.

    Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды|воды попадает|попадает в растение, тем больше её дефицит и, соответственно, меньше транспирация.

    При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это всё|все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.

    Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зелёные растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.

    Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды|воды. 

      по теме : Транспирация у растений

  • Источник: https://biologyinfo.ru/page/transpiracija-u-rastenij/

    Ваше здоровье
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: