Бескислородная среда

Анаэробное окисление — что это, степень аэробности, классификация

Бескислородная среда

В наиболее широком смысле под анаэробными принято понимать процессы, для осуществления которых не требуется участие кислорода. Результатом их осуществления становятся углекислота, метан, водород, аммиак и сероводород, продукты распада органических веществ.

Степень аэробности среды

Степень аэробности среды характеризуется прежде всего ее окислительно-восстановительным потенциалом – физической величиной, выражаемой в вольтах и измеряемой посредством потенциометрии.

В среде, максимально насыщенной кислородом, показатель может достигать 41. При насыщении среды водородом он приближается к нулю.

Число 28 позволяет делать выводы о том, что процессы окисления и равновесия сбалансированы.

Наблюдается четкая зависимость между окислительно-восстановительным потенциалом среды и параметрами жизнедеятельности организмов. Таким образом, воздействуя на него и меняя на свое усмотрение, можно регулировать их численность.

Однако не стоит забывать и об обратной зависимости: выделяя продукты обмена, а также используя адаптационные механизмы, микроорганизмы также могут вилять на окислительно-восстановительный потенциал среды, в которой они находятся.

Классификация анаэробов

Различают два основных типов анаэробов:

  1. Факультативы (кишечная палочка, стафилококк, стрептококк, шигелл). Приспособлены к существованию как в кислородной, так кислородсодержащей среде).
  2. Облигатные существуют исключительно в бескислородной среде. Малейший контакт с этим газом приводит к гибели этих организмов.

Облигатные микроорганизмы также делятся на две категории:

  1. Клостридии – возбудители развития ряда инфекций, в частности бутулизма, столбняка. Образуют споры.
  2. Неклостридиальные – не представляющие опасности как для человека, так и других живых существ. Это – бактериоды, эубактерии, пейллонеллы, пептококки. Не образуют споры.

В жидкой питательной среде факультативы равномерно распределены по всем ее слоям, облигатные же, избегая контакта с кислородом, сосредоточены в нижних.

Методы анаэробной очистки сточных вод

Поскольку процесс анаэробной очистки осуществляется без участия кислорода, фактически он представляет собой брожение, либо ферментацию, в процессе которых наблюдается выработка метана.

Органические соединения при этом распадаются на более простые, проходя несколько стадий.  Каждая из них происходит с участием микроорганизмов, отличающихся разным характером воздействия.

  1. Фаза гидролиза. Позволяет разложить сложные углеводороды на более простые составляющие и воду. Бактерии способствуют тому, что белки распадется до аминокислот, из жиров получаются жирные кислоты, происходит образование сахара из углеводов.
  2. Фаза промежуточного окисления продолжает процесс преобразования органических соединений, образуя альдегиды, спирты и органические кислоты.
  3. Третья фаза обеспечивает возможность осуществить окисление всех продуктов, участвующих в реакция до уксусной кислоты и водорода.
  4. На заключительной фазе происходит включение в процесс метанобразующих бактерий. Они питаются продуктами распада, выделенных в результате предыдущих реакций, выделяя при этом углекислый газ и метан. Прирост илистой массы при этом несущественен.

Фазы анаэробной очистки тесно связаны между собой, из-за чего нарушение одной из них неизбежно приведет к дестабилизации всего процесса в целом. Это объясняется тем, что питательной средой для микроорганизмов на каждой следующей стадии становятся вещества, произведенные на предыдущих.

Для того чтобы процесс очистки происходил более эффективно, важно ответственно отнестись к определению качественного состава органики стока. Белки, жиры и углеводы разлагаются с разной скоростью, зная их процентное содержание можно эффективнее рассчитывать и контролировать описанный процесс.

На скорость протекания стадий, в особенности двух последних в значительной степени влияет уровень кислотности среды.

Анаэробное окисление: брожение и гниение

Брожение представляет анаэробный процесс, в ходе которого происходит превращение органических веществ, не содержащих азот в более простые соединения посредством включения микроорганизмов. При этом осуществляется выделение энергии и накопление продуктов неполного окисления. функция брожения – образование энергии, поддерживающей процессы жизнеобеспечения внутри микроорганизмов.

Также как брожение, гниение представляет собой процесс разложения органических веществ. Однако в отличие от брожения, гниение осуществляется под воздействием аммонификаторов и сопровождается выделением газообразного аммиака. Процесс происходит главным образом в белковых соединениях, содержащих азот.

Источник: https://musorish.ru/anaerobnoe-okislenie/

Аэробные и анаэробные бактерии: классификация и культивирование, дыхание

Бескислородная среда

› Всё о бактериях › Разновидности

Бактерии появились более 3,5 миллиардов лет назад и были первыми живыми организмами на нашей планете. Именно благодаря аэробным и анаэробным видам бактерий на Земле зародилась жизнь.

Сегодня они являются одной из самых разнообразных в видовом плане и широко распространенной группой прокариотических (не имеющих ядра) организмов. Различное дыхание позволило подразделить их на аэробные и анаэробные, а питание – на гетеротрофные и автотрофные прокариоты.

Классификационное деление прокариотов

Видовое разнообразие этих безъядерных одноклеточных организмов огромно: наука описала только 10000 видов, а предположительно существует более миллиона видов бактерий. Их классификация крайне сложна и осуществляется, опираясь на общность следующих признаков и свойств:

  • морфологических – форма, способ передвижения, способность к спорообразованию и другие);
  • физиологических – дыхание кислородом (аэробные) или бескислородный вариант (анаэробные бактерии), по характеру продуктов метаболизма и другие;
  • биохимических;
  • сходство генетических характеристик.

К примеру, морфологическая классификация по внешнему виду подразделяет все бактерии как:

  • палочковидные;
  • извилистые;
  • шаровидные.

Классификация физиологическая по отношению к кислороду делит все прокариоты на:

  • анаэробные – микроорганизмы, дыхание которых не требует наличия свободного кислорода;
  • аэробные – микроорганизмы, нуждающиеся в кислороде для своей жизнедеятельности.

Анаэробные прокариоты

Анаэробные микроорганизмы полностью соответствуют своему названию – приставка ан- отрицает значение слова, аэро – это воздух и б- жизнь. Получается – безвоздушная жизнь, организмы, чье дыхание не нуждается в свободном кислороде.

Бескислородные микроорганизмы делятся на две группы:

  • факультативно-анаэробные – способные существовать как в среде, содержащей кислород, так и при его отсутствии;
  • облигатные микроорганизмы – погибающие при наличии в среде свободного кислорода.

Классификация анаэробных бактерий подразделяет облигатную группу по возможности спорообразования на следующие:

  • спорообразующие клостридии – грамположительные бактерии, большинство из которых подвижны, характеризуются интенсивным метаболизмом и большой изменчивостью;
  • неклостридиальные анаэробы – грамположительные и отрицательные бактерии, которые являются частью микрофлоры человека.

Свойства клостридий

Спорообразующие анаэробные бактерии в большом количестве встречаются в почве и в желудочно-кишечном тракте животных и человека. Среди них известно более 10 видов, которые являются токсичными для человека. Эти бактерии образуют высокоактивные экзотоксины, специфические для каждого вида.

Хотя инфекционным возбудителем может быть один вид анаэробных микроорганизмов, более характерна интоксикация различными микробными ассоциациями:

  • несколькими видами анаэробных бактерий;
  • анаэробных и аэробных микроорганизмов (чаще всего клостридии и стафилококки).

Бактериальный посев

Вполне закономерно в привычной нам кислородной среде, что для получения облигатных аэробов необходимо использовать специальное оборудование и микробиологические среды. По сути, культивирование бескислородных микроорганизмов сводится к созданию условий, при которых доступ воздуха к средам, где производится культивирование прокариотов, полностью перекрыт.

В случае проведения микробиологического анализа на облигатные анаэробы крайне важным являются методы забора пробы и способ транспортировки образца в лабораторию. Так как под действием воздуха облигатные микроорганизмы незамедлительно погибнут, пробу необходимо сохранять либо в герметичном шприце, либо в специализированных средах, предназначенных для подобных транспортировок.

Аэрофильные микроорганизмы

Аэробами называют микроорганизмы, чье дыхание невозможно без свободного кислорода воздуха, а их культивирование проходит на поверхности питательных сред.

По степени зависимости от кислорода все аэробы делят на:

  • облигатные (аэрофилы) – способны развиваться только при высокой концентрации кислорода в воздухе;
  • факультативно-аэробные микроорганизмы, развивающиеся и при пониженном количестве кислорода.

Свойства и особенности аэробов

Аэробные бактерии обитают в почве, воде и воздухе и активно участвуют в круговороте веществ. Дыхание бактерий, которые являются аэробами, осуществляется путем прямого окисления метана (СН4), водорода (Н2), азота (N2), сероводорода (Н2S), железа (Fe).

К облигатным аэробным микроорганизмам, которые являются патогенными для человека, относятся туберкулезная палочка, возбудители туляремии и холерный вибрион. Всем им для жизнедеятельности необходимо высокое содержание кислорода. Факультативно-аэробные бактерии, такие как сальмонелла, способны осуществлять дыхание при весьма незначительном количестве кислорода.

Аэробные микроорганизмы, осуществляющие свое дыхание в кислородной атмосфере, способны существовать в весьма широком диапазоне при парциальном давлении от 0,1 до 20 атм.

Выращивание аэробов

Культивирование аэробов подразумевает использование подходящей питательной среды. Необходимыми условиями являются также количественный контроль кислородной атмосферы и создание оптимальных температур.

Дыхание и рост аэробов проявляется в виде образования мути в жидких средах или, в случае плотных сред, в виде образования колоний. В среднем для выращивания аэробов в условиях термостатирования потребуется о 18 до 24 часов.

Общие свойства для аэробов и анаэробов

  1. Все эти прокариоты не имеют выраженного ядра.
  2. Размножаются или почкованием, или делением.
  3. Осуществляя дыхание, в результате окислительного процесса, как аэробные, так и анаэробные организмы разлагают огромные массы органических остатков.
  4. Бактерии являются единственными живыми существами, чье дыхание связывает молекулярный азот в органическое соединение.
  5. Аэробные организмы и анаэробы способны осуществлять дыхание в широком диапазоне температур.

    Существует классификация, согласно которой безъядерные одноклеточные организмы подразделяют на:

  • психрофильные – условия жизни в районе 0°С;
  • мезофильные – температура жизнедеятельности от 20 до 40°С;
  • термофильные – рост и дыхание происходит при 50-75°С.

Работаю врачом ветеринарной медицины.

Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Жизнь на планете всем обязана анаэробным и аэробным бактериям Ссылка на основную публикацию

на сайте носят исключительно ознакомительный характер. В статьях, описывающих ту или иную болезнь, нет призыва к действию. Если Вы обнаружили у себя подобные симптомы, Вам обязательно необходимо обратиться к врачу! Самолечение может быть опасным для Вашего здоровья!

Источник: https://probakterii.ru/prokaryotes/species/ajerobnye-i-anajerobnye-bakterii.html

9 совершенно не подходящих для жизни мест, где она всё-таки смогла зародиться

Бескислородная среда

Принято считать, что необходимыми условиями для возникновения жизни является наличие света, кислорода и воды — по крайней мере, с большинством видов живых существ на нашей планете дело обстоит именно так.

Но Земля — место удивительное, и жизнь здесь порой существует в совершенно невообразимых условиях, что обнадёживает: вполне возможно, когда-нибудь мы найдём жизнь и на других планетах, где условия вовсе не такие благоприятные.

Надеемся, что об этом мы сможем рассказать вам через несколько лет, а пока предлагаем вашему вниманию подборку самых необычных мест на нашей планете, где тоже сумели возникнуть и выжить живые организмы.

1. Асфальтовое озеро

В Атлантическом океане есть остров Тринидад, он необычен прежде всего тем, что на нём находится единственное в мире озеро, в котором вместо воды — жидкий асфальт.

Местные жители используют озеро для своих нужд: каждый год здесь добывают примерно 100 т асфальта, при этом озеро мельче не становится — глубина котловины также неизвестна.

О причинах происхождения загадочного природного явления можно только догадываться.

Экстремофил-тихоходка

Однако самое удивительное — даже не это. В совершенно непригодных для жизни условиях обитают крошечные бактерии-экстремофилы: в каждом грамме озёрной субстанции живёт порядка 10 млн особей.

Отметим, что температура асфальта — около 50 °С, воды, считающейся обязательным условием для возникновения жизни, здесь почти нет-то мизерное количество, которое всё же можно обнаружить, вырабатывается непосредственно озёрными обитателями.

Кроме того, бактериям приходится жить в бескислородной среде — вместо этого они используют для дыхания металлы и углеводороды.

2. Радиоактивные воды

Бактерии вида Deinococcus radiodurans могут выдерживать ионизирующее излучение порядка 10 000 грэй (человек при получении пяти грэй умирает).

Более того, эти бактерии предпочитают жить именно в тех местах, где, так или иначе, присутствует радиация — в природных водах, содержащих колоссальное количество радиоактивных веществ вроде радия, радона или урана.

Deinococcus radiodurans выживают благодаря постоянному копированию своей ДНК: к тому моменту, как излучение уничтожает один геном, другая аналогичная молекула уже начинает работать, и существо продолжает жить. По сути одна особь может существовать почти вечно, постоянно обновляя сама себя.

Deinococcus radiodurans

Сейчас исследователи ищут способ полезного применения бактерий для нужд человека: поскольку бактерии, по сути, питаются радиоактивными отходами, то их возможно использовать для биоочистки радиоактивных загрязнений.

Более того, после ядерной катастрофы бактерии по понятным причинам выживут, так что вполне могли бы послужить в качестве носителя информации для остатков человечества.

Кстати, такой эксперимент уже проводился и был успешным: в 2003-м году учёные закодировали песню в ряд сегментов ДНК и внедрили их в бактерии — информация в точности передалась через сто поколений бактерий, и учёные смогли её прочитать.

3. Дно океана

Глубоко под водой, куда не может пробиться ни один луч света, тоже есть жизнь, причём жизнь эта представлена не только бактериями, как в двух предыдущих случаях. На дне океана обитают амёбы и странные глубоководные рыбы — им как-то удаётся выживать в условиях невероятного давления и при почти полном отсутствии кислорода.

Правда, существует теория, что на больших глубинах жизнь не зародилась, а, скорее, мигрировала сюда — некоторые виды не выдержали конкуренции и были вынуждены опуститься на дно в поисках нового ареала обитания.

Однако это не объясняет существование живых организмов, скажем, в Марианской впадине: довольно сложно предположить, что какой-то вид в поисках места для жизни спустился бы «по собственной воле» на такую глубину.

Ещё в 1960-м году два исследователя, Жак Пикар и Дон Уолш, смогли увидеть на глубине более 10 000 м плоских, похожих на камбалу рыб, а Джеймс Кэмерон в 2012-м году даже сумел доставить на поверхность микроорганизмы из «бездны Челленджера». Отметим, что на больших глубинах не было найдено ни одного вида, возраст которого был бы меньше 200 млн лет, и учёные полагают, что с тех пор они практически не изменились.

В основном глубоководные жители — падальщики, питающиеся всей органикой, которая попадает на глубину «сверху».

4. Мёртвое море

Мёртвое море — один из самых солёных водоёмов на планете: согласно исследованиям, солёность воды в нём составляет 35%, по составу это преимущественно хлориды магния, кальция, натрия и калия.

К сожалению, в результате ухудшения экологической обстановки, выкачивания грунтовых вод и изменения климата на планете Мёртвое море постепенно высыхает, и, возможно, совсем исчезнет уже в нашем столетии.

А вместе с ним исчезнут и населяющие его живые организмы, уникальные по своей природе.

Галофилы

В Мёртвом море обитают галофильные микробы — солёность воды ни в коей мере не мешает им жить и размножаться в, казалось бы, совершенно не подходящих для этого условиях, напротив, чем выше солёность, тем лучше они растут. Эти микробы — очень стойкие организмы: по сути, они могли бы выдержать сверхнизкие температуры или остаться живыми даже в космическом вакууме благодаря своей способности к осморегуляции.

5. Кипящие воды

Водоёмы, где температура воды близка к 100 °C, не такая уж и редкость на нашей планете: в частности, геотермальные источники существуют в Карибском море на глубине около 5 000 м, и здесь температура воды близка к 400 °С — это глубочайшие кипящие источники на Земле. Ни один наземный организм в таких условиях выжить не может, однако бактерии, некоторые виды моллюсков и многощетинковые черви прекрасно приспособились к жизни в кипятке.

Черви, например, не имеют ни рта, ни кишечника, а энергию для жизни они получают не в результате поглощения пищи, а благодаря переработке сероводорода. Тела их защищены от возможного неблагоприятного воздействия сверхвысоких температур хитиновыми панцирями.

Удивительно, но если вода по каким-то причинам остывает или колония многощетинковых червей покидает привычную зону обитания, то они перестают размножаться и через некоторое время погибают.

В «идеальных» же условиях они живут долго — исследователям удавалось найти особей возрастом более 250-ти лет.

6. Лёд

Строго говоря, найденные в толще льда организмы не совсем живут — необходимые для их жизни процессы «заморожены» в прямом и переносном смысле. В частности, во льдах Антарктиды обнаружены древние бактерии, обитают они непосредственно в толще льда — ледниках и айсбергах: если айсберг дрейфует в океане, то с ним дрейфуют и населяющие его бактерии.

Однажды кусок льда с такими бактериями удалось доставить в лабораторию.

После разморозки бактерии почти сразу пришли в движение, принялись размножаться и искать пищу: то, что они находились в состоянии анабиоза, возможно, около миллиона лет, не нанесло им никакого вреда.

Исследователи пришли к выводу, что это возможно благодаря геному древних микроорганизмов: он был короче и примитивнее генома современных бактерий — у них всего 210 пар нуклеотидов, в то время как у других бактерий обычно насчитывается по три млн пар.

7. Сухие долины Антарктиды

Живые организмы, спящие в толще льда — не единственная загадка Антарктиды: на самом южном материке существуют сухие поля, называемые также «Марсианскими долинами».

Сухие поля можно по праву назвать самым сухим местом на Земле, поскольку осадков здесь не было уже два млн лет, температура воздуха не поднимается выше -20 °С, а нормальная скорость ветра — 300 км/час.

Соответственно, почва долин не покрыта ни льдом, ни снегом.

До недавнего времени считалось, что выжить в таких условиях невозможно: нет хоть какой-то воды — нет и жизни. Однако в 2009-м году в сухих долинах были взяты пробы почвы, в которых обнаружились живые организмы — бактерии.

Есть гипотеза, что они попали туда с последним выпавшем этих местах дождём и приспособились жить в почве, не нуждаясь в кислороде или свете и игнорируя холод, но пока неизвестно, чем они питаются и каким образом виду удалось продержаться в течение такого долгого времени.

8. Подземные глубины

Человечество, движимое экономическими и исследовательскими интересами, с давних пор стремится покорить недра земли.

Чаще всего люди пытаются проникнуть на практически недостижимую глубину для добычи полезных ископаемых: например, в окрестностях Йоханнесбурга есть глубочайшая в мире золотая шахта Мпоненг, её глубина — более 3 500 м.

Температура в земных недрах, разумеется, гораздо выше, чем на гостеприимной поверхности — около 60 °С. Здесь нет света и почти нет воздуха, но разве этим к восьмому пункту кого-то удивишь? Само собой, жизнь есть и здесь.

Обитающие под землёй бактерии в качестве источника жизнеобеспечения используют ядерные реакции: благодаря радиоактивному излучению, молекулы воды расщепляются на водород и кислород, затем атомарный водород восстанавливается, и выделившуюся в результате этого процесса энергию бактерии используют для жизни. Обитают они преимущественно в крохотном количестве влаги в трещинах породы.

9. Ядовитый ил

В Средиземном море большая часть дна покрыта желтым и синим карбонатным илом, который насыщен сероводородом и для всего живого ядовит. Кислорода в такой среде нет и быть не может, свет туда не проникает.

Люди без специального оборудования и защитных костюмов сюда погрузиться не способны — даже если бы мы умели дышать под водой, непродолжительное воздействие сероводорода оказало бы на организм отравляющее воздействие.

Вам понравилась статья? Помогите проекту!Наша команда старается сделать ваше пребывание на сайте удобным и полезным. Мы будем благодарны, если вы поддержите наш проект, это поможет нам сделать его еще лучше!

Зато в толще ила живут анаэробные бактерии родов Desulfobacter, Desulfobacterium и Desulfococcus.

Эти бактерии — одни из самых крохотных микроорганизмов в мире, длина их тел составляет в среднем около 150 микрон.

По своему составу клетки бактерий походят на клетки грибов, и кислород для дыхания им не нужен, а энергию для жизни они получают благодаря способности окислять сероводород и откладывать в теле крупинки серы.

  • Полина
  • Распечатать

Источник: https://www.publy.ru/post/3616

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: