Азотсодержащие бактерии

Содержание
  1. Превращение соединений азота
  2. Фиксация атмосферного азота свободноживущими бактериями (ассоциативная диазотрофия)
  3. Симбиотическая азотофиксация
  4.  Аммонификация белков (минерализация азота)
  5. Нитрификация и денитрификация
  6. Азот бактерии — Знаешь как
  7. Как определили что азот для повышения урожая
  8. Залежи селитры и рост народонаселения
  9. Где и как берут бактерии необходимый для жизни азот – Мир Бактерий
  10. Азот (N): такой важный, такой нужный
  11. Зачем растению азот?
  12. Как понять, что растению не хватает азота?
  13. Какой азот продают в магазинах и какой из них лучше?
  14. Аммиачный или аммонийный азот (NH4)
  15. Нитратный азот (NO3)
  16. Амидный азот CO(NH2)2, карбамид или просто мочевина
  17. Азотфиксирующие бактерии: среда обитания, функции
  18. Кто такие бактерии?
  19. Классы бактерий
  20. Способы питания
  21. Хемотрофы
  22. Азотфиксирующие бактерии: среда обитания
  23. Строение
  24. Производительность
  25. Процессы жизнедеятельности
  26. Пути проникновения бактерий в корень
  27. Значение хемотрофов

Превращение соединений азота

Азотсодержащие бактерии

Запасы азота на планете Земля огромны. Основная масса его находится в атмосфере в молекулярной форме (N2). Эта форма азота химически инертна и может усваиваться лишь ограниченной группой микроорганизмов ─ бактериями, которые называются азотофиксаторами.

Связанный ферментами бактерий азот называется биологическим и, циркулируя в биосфере, формирует биогеохимический цикл азота (рис.29).

Круговорот азота происходит следующим образом: диазотрофы поглощают атмосферный азот и образуют аммиак, который служит исходным веществом для образования белков.

Рис. 29 . Круговорот азота в природе

Белки растений и животных могут разлагаться с помощью бактерий─аммонификаторов с образованием аммиака и ионов аммония, затем в процессе микробной нитрификации образуются нитраты. В результате денитрификации образуется молекулярный азот. Все эти превращения происходят с участием микроорганизмов.

Азотофиксация

К азотофиксаторам относят две основные группы бактерий: свободноживущие (ассоциативные) и симбиотические (или клубеньковые) (табл.4).

Таблица 4. Основные группы диазотрофов

Свободноживущие (ассоциативные) азотофиксаторыСимбиотическиеазотофиксаторы
ПРЕДСТАВИТЕЛИ
Azotobacter, Azospirillium, Klebsiella, Enterobacter, Nostoc, Anabaena, ClostridiumСимбионты бобовых –Род RhizobiumСимбионты небобовых растений – род Frankia
Обитают в ризосфере, ризоплане растений, обладают Нитрогеназной Активностью, могут в значительной мере заменить минеральный азот, предохраняют от избытка нитратов в продукции. Обладают высокой антибиотической активностью (комплексное питательное и защитное действие)Образуют симбиотические клубенькиНа корнях растений

Фиксация атмосферного азота свободноживущими бактериями (ассоциативная диазотрофия)

Ассимиляция атмосферного азота микроорганизмами – диазотрофия – имеет важное значение в балансе азота в почве. Её осуществляют свободноживущие и симбиотические микроорганизмы: бактерии, актиномицеты, цианобактерии.

Среди свободноживущих наиболее распространены бактерии родов Azotobacter и Clostridium.

Бактерии AzotobacterChroococcum фиксируют азот в аэробных условиях. На агаре образует слизистые колонии. Молодые клетки имеют вид попарно соединенных крупных, коротких палочек с закругленными концами. Они подвижны, перитрихи. По мере развития они теряют подвижность, становятся эллипсоидными, а затем круглыми.

Часто окружены слизистой капсулой, которая выявляется после окраски клеток фуксином и смешивания с разбавленной тушью (рис. 30). Внутри клеток ясно выражена зернистость. В качестве источника углерода азотобактер использует моно-, дисахариды, спирты и соли органических кислот, в том числе и бензойной. В неблагоприятных условиях образуют цисту.

ClostridiumPasteurianum – облигатный анаэроб. Энергию для всех процессов жизнедеятельности, в том числе для ассимиляции атмосферного азота, бактерии этого вида получают за счет маслянокислого брожения.

Цианобактерии-азотофиксаторы относятся к родам Nostoc, Anabaena. Все цианобактерии фотоавтотрофы, аминоавтотрофы, аэробы.

Образуют специализированные клетки – Гетероцисты, Которые защищены от окисления кислородом воздуха толстой оболочкой.

Это имеет большое значение, так как процесс азотофиксации восстановительный, кислородом он ингибируется.

Химизм: Процесс усвоения азота происходит по восстановительному пути и отражается схемой:

 NH2

2[H] 2[H] 2[H]

N ≡ N NH=NH NH2 – NH2 2NH3 R—CH 2—COOH

Азот диимид гидразин аммиак аминокислота

АТФ АТФ АТФ

Аммиак используется для аминирования кетокислот с образованием аминокислот. Процесс идет с использованием восстановительных эквивалентов (НАДФ•H2) и энергии АТФ. Для восстановления 1 молекулы N2 до аммиака затрачивается 12 молекул АТФ.

https://www.youtube.com/watch?v=KKK-ueKi_M0

Способность к фиксации атмосферного азота обусловлена наличием сложной системы ферментов – Нитрогеназой. Эти ферменты кодируются 17 генами и подразделяются на 2 фракции:

·  молибдобелок – фракция, содержащая молибден;

·  железобелок – фракция, содержащая железо.

Процесс играет колоссальную роль в природе, так как в нем происходит превращение азота в доступные для живых организмов формы, повышается почвенное плодородие.

Симбиотическая азотофиксация

Этот процесс осуществляется многими микроорганизмами в симбиозе как с бобовыми, так и с не бобовыми растениями.

Наиболее изучена фиксация азота бактериями рода Rhizobium в симбиозе с бобовыми растениями (рис.31). Известно 1300 видов бобовых, на корнях которых бактерии образуют клубеньки.

Представители рода Rhizobium – грамотрицательные бесспоровые палочки размером 0,5-0,9 х 1,2-3 мкм (рис.32а). Имеют жгутики (монотрихи или перитрихи). При старении теряют подвижность, накапливают жировые включения.

А б в г

Рис. 31. Клубеньки на корнях: А)люпина; б)люцерны; в)фасоли; г)вики.

 В зрелой клубеньковой ткани бактериальные клетки превращаются в бактероиды: грушевидные, сферические или ветвистые образования (рис.32б). В таком виде клубеньковые бактерии наиболее энергично усваивают атмосферный азот.

На питательных средах бактерии рода Rhizobium усваивают органические вещества (гетеротрофы), аэробы, могут использовать в качестве источника азота как минеральные, так и органические его формы, но не атмосферный азот.

Способность к азотфиксации у ризобий сохраняется только в симбиозе с тканями бобовых растений.

Химизм симбиотической азотофиксации и ферменты те же, что и у свободноживущих микроорганизмов.

 Аммонификация белков (минерализация азота)

Процесс выделения азота из аминокислот и превращение его в аммиачную форму называется аммонификацией. Микроорганизмы, вызывающие этот процесс, выделяют в окружающую среду протеолитические ферменты, под действием которых белки гидролизуются до аминокислот» Последние поступают в клетку и в ней дезаминируются с образованием аммиака, органических кислот и других продуктов.

Возбудителями процесса аммонификации являются аммонифицирующие или гнилостные бактерии. Их можно разделить на три группы по отношению к источникам кислорода:

1.Аэробы: Bacillus mycoides, Bacillus subtilis, Bacillus megatherium, Bacillus mesentericus.

BacillusMycoides – палочки 5-10 х 1,0-1,5 мкм, перитрихи, соединяются в цепочки, образуя жирные пленки на поверхности жидкой среды. Споры овальные, расположены эксцентрально (рис.33А).

BacillusSubtilis – палочки короткие и тонкие, 3-5 х 0,6 мкм, нередко соединены в длинные нити. Споры овальные, расположены без строгой локализации (рис.33Г).

BacillusMesentericus -палочки тонкие, длинные и короткие, 3-10 х 0,5-0,6 мкм, одиночные или соединены в длинные нити. Споры овальные и продолговатые, бациллярного типа.

BacillusMegatherium -клетки толстые до 2 мкм в диаметре, длина от 3 до 12 мкм. Содержимое клеток грубозернистое с большим количеством питательных веществ (жир, гликоген) (рис.33Б).

2. Анаэробы факультативные:

ProteusVulgaris -палочки длиной от 1 до 20 мкм, перитрихи, спор не образуют, грамотрицательны (рис.33В) .

EscherichiaСOli – кишечная палочка. Небольшие грамотри-цательные палочки, перитрихи, спор не образуют.

3.Анаэробы облигатные:

BacillusCadaveris, ВасIllusPutrificus – небольшие палочки до 5 мкм, образуют споры плектридиального типа. Выделяют трупные яды (кадаверин, путресцин).

А) BacillusMycoidesБ) BacillusMegatherium
В) ProteusVulgarisГ) Bacillus subtilis

Рис. 33. Аммонификаторы белка (гнилостные бактерии)

Химизм процесса аммонификации:

1 этап – протеолиз белкаПроходит по схеме:

NH2

Протеаза

Белок + NH2O аминокислоты (АК) : RCHCOOH

2 этап – дезаминирование. – Бывает трех видов:

А)простое дезаминирование:

 NH2

RCHCOOHRCHCOOH + NH3

Б)окислительное дезаминирование:

 NH2

R—CH—COOH + ½ O2 R—CO—COOH + NH3

В)восстановительное дезаминирование:

 NH2

RCHCOOH + H2 RCH2COOH + NH3

Основные ферменты: протеазы, дезаминазы, трансаминазы.

Все аммонификаторы – гетеротрофы, аминогетеротрофы.

Значение процесса: перевод соединений азота в доступную для растений форму, подщелачивание кислых почв, порча пищевых продуктов. Многие аммонификаторы выделяют токсичные вещества (трупные яды – путресцин и кадаверин, а также ботулин – самый сильный пищевой яд).

Нитрификация и денитрификация

Под Нитрификацией понимают процессы окисления аммиака до нитритов и нитратов. Процесс идет в две фазы. Возбудителями фаз являются последовательно:

I фаза: возбудители бактерии рода Nitrosomonas : имеют овальную, иногда кокковидную форму. Размеры 1,5-3 мкм. Подвижны монотрихи (или лофотрихи), спор не образуют. Окисляют аммиак до нитритов по реакции:

2NH3 + 3O2 2HNO2 + 2H2O + Энергия

II фаза – возбудители бактерии рода Nitrobacter – мелкие тонкие палочки (0,5 х 1 мкм). Клетки подвижные (монотрихи) или неподвижные. Часто в колонии наблюдается полиморфизм (клетки различной формы). Для нитробактерий характерно размножение почкованием.

2NHO2 + O2 2HNO3 + Энергия

Энергию бактерии используют для ассимиляции углекислого газа.

Микроорганизмы-нитрификаторы являются хемоавтотрофами, облигатными аэробами, аминоавтотрофами.

В природе, являясь автотрофами участвуют в накоплении первичного органического вещества. Почвообразователи. Приняли участие в образовании залежей природной селитры (например, в пустыне Атакама в Чили).

Количество нитратов в почве – показатель плодородия. Однако нитраты легко вымываются из почвы, поэтому чересчур высокая нитрифицирующая способность почвы может привести к потерям больших количеств доступного азота.

Денитрификация. В этом процессе происходит восстановление нитратов до молекулярного азота.

Возбудители – Бактерии вида ParacoccusDenitrificans.

Химизм: восстановление нитратов происходит по диссимиляционному типу:

+ [H] + [H]

 NO3 NO2 N2

H2O H2O

Ключевые ферменты процесса : нитратредуктаза, нитритредуктаза

Биологический смысл: использование кислорода нитратов в качестве акцептора водорода при окислении углеводов (анаэробное нитратное дыхание).

Возбудители процесса денитрификации гетеротрофы, аминоавтотрофы, факультативные анаэробы.

Роль процесса в природе весьма двусмысленна. С одной стороны в результате процесса происходит потеря доступных форм азота из почвы. С другой стороны, возбудители процесса выделяют в зону корней различные биологически активные вещества, вызывая стимуляцию роста корней.

Источник: https://veterinarua.ru/mikrobiologiya/465-prevrashchenie-mikroorganizmami-soedinenij-azota.html

Азот бактерии — Знаешь как

Азотсодержащие бактерии

Из почвы соединения азота попадают в растения. Далее: «лошади кушают овес», а хищники — травоядных животных. По пищевой цепи идет круговорот вещества, в том числе и элемента № 7. При этом форма существования азота меняется, он входит в состав все более сложных и нередко весьма активных соединений. Но не только «грозорожденный» азот путешествует по пищевым цепям.

Еще в древности было замечено, что некоторые растер ния, в частности бобовые, способны повышать плодородие почвы.

«…Или, как сменится год, золотые засеивай злаки Там, где с поля собрал урожай, стручками шумящий, Иди где вика росла мелкоплодная с горьким лупином…»
Вчитайтесь: это же травопольная система земледелия!; Строки эти взяты из поэмы Вергилия, написанной около двух тысяч лет назад.

Как определили что азот для повышения урожая

Пожалуй, первым, кто задумался над тем, почему бобовые дают прибавки урожая зерновых, был французский агрохимик Ж, Буссенго. В 1838 г. он установил, что бобовые обогащают почву азотом. Зерновые же (и еще многие другие растения) истощают землю, забирая, в частности, все тот же азот. Буссенго предположил, что листья бобовых усваивают азот из воздуха, но это было заблуждением.

В то время немыслимо было предположить, что дело не в самих растениях, а в особых микроорганизмах, вызывающих образование клубеньков на их корнях. В симбиозе с бобовыми эти организмы и фиксируют азот атмосферы. Сейчас это прописная истина…

В наше время известно довольно много различных азот-фиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибки, синезеленые водоросли. И все они поставляют азот растениям. Но вот вопрос: каким образом без особых энергетических затрат расщепляют инертную молекулу N» микроорганизмы?

И почему одни из них обладают этой полезнейшей для всего живого способностью, а другие нет? Долгое время это оставалось загадкой. Тихий, без громов и молний механизм биологической фиксации элемента № 7 был раскрыт лишь недавно.

Доказано, что путь элементного азота в живое вещество стал возможен благодаря восстановительным процессам, в ходе которых азот превращается в аммиак. Решающую роль при этом играет фермент нитрогеназа.

Его центры, содержащие соединения железа и молибдена, активируют азот для «стыковки» с водородом, который предварительно активируется другим ферментом. Так из инертного азота получается весьма активный аммиак — первый стабильный продукт биологической азотфиксации.

Вот ведь как получается! Сначала процессы жизнедеятельности перевели аммиак первичной атмосферы в азот, а затем жизнь снова превратила азот в аммиак. Стоило ли природе на этом «ломать копья»? Безусловно, потому что именно так и возник круговорот элемента № 7.

Залежи селитры и рост народонаселения

Природная фиксация азота молниями и почвенными бактериями ежегодно дает около 150 млн т соединений этого элемента. Однако не весь связанный азот участвует в круговороте. Часть его выводится из процесса и отлагается в виде залежей селитры. Богатейшей такой кладовой оказалась чилийская пустыня Атакама в предгорьях Кордильер. Здесь годами не бывает дождей.

Но изредка на склоны гор обрушиваются сильные ливни, вымывающие почвенные соединения. Потоки воды в течение тысячелетий выносили вниз растворенные соли, среди которых больше всего было селитры. Вода испарялась, соли оставались… Так возникло крупнейшее в мире месторождение азотных соединений.

Еще знаменитый немецкий химик Иоганн Рудольф Глаубер, живший в XVII в., отметил исключительную важность азотных солей для развития растений. В своих сочинениях, размышляя о круговороте азотистых веществ в природе, он употреблял такие выражения, как «нитрозвые соки почвы» и «селитра — соль плодородия»

Но природную селитру в качестве удобрения стали применять лишь в начале прошлого века, когда стали разрабатывать чилийские залежи. В то время это был единственный значительный источник связанного азота, от которого, казалось, зависит благополучие человечества. Об азотной же промышленности тогда не могло быть и речи.

В 1824 г. английский священник Томас Мальтус провозгласил свою печально известную доктрину о том, что народонаселение растет гораздо быстрее, чем производство продуктов питания. В это время вывоз чилийской селитры составлял всего около 1000 т в год. В 1887 г.

соотечественник Мальтуса, известный ученый Томас Гексли предсказав скорый конец цивилизации из-за «азотного голода», я который должен наступить после выработки месторождений чилийской селитры (ее добыча к этому времени составляла уже более 500 тыс, т в год).

Через 11 лет еще один знаменитый ученый сэр Уильям Крукс заявил в Британском обществе содействия наукам, что не пройдет и полувека, как наступит продовольственный крах, если численность народонаселения не сократится. Он также аргументировал свой печальный прогноз тем, что «в скором времени предстоит полное истощение залежей чилийской селитры» со всеми отсюда вытекающими последствиями.

Пророчества эти не оправдались — человечество не погибло, а освоило искусственную фиксацию элемента № 7. Более того, сегодня доля природной селитры —лишь 1,5 % от мирового производства азотсодержащих веществ.

Статья на тему Азот бактерии

Источник: https://znaesh-kak.com/x/n/azot/%D0%B0%D0%B7%D0%BE%D1%82-%D0%B1%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D0%B8

Где и как берут бактерии необходимый для жизни азот – Мир Бактерий

Азотсодержащие бактерии

Круговорот азота

Круговорот азота — биогеохимический процесс в биосфере, в котором участвуют организмы-редуценты, а также нитрифицирующие и клубеньковые бактерии.

При гниении органических веществзначительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве трифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

2HN0з + СаСОз = Са(NОз)2 + СО2 + НOН

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа.

Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих де ни трифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот).

Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота.

К таким процессам относятся, прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты.

Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот.

Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. 

Таким образом, основная часть молекулярного азота фиксируется при участии бактерий и некоторых других организмов, превращающих его в соединения аммония (NH4+).

Фиксация 1 г атмосферного азота требует расхода бактериями в клубеньках бобовых 167 кДж, т. е. окисления примерно 10 г глюкозы.

Симбиоз растений и азотфиксирующих бактерий основан на получении первыми азота в усваиваемой форме, а вторыми — «места жительства».

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Благодаря высокой растворимости, они с дождевыми и грунтовыми водами попадают в Мировой океан.

Азот из тканей растений и животных после их гибели подвергается разложению и денитрификации, т. е. — выделению атомарного азота и его оксидов. Эти процессы идут также благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

Азотфиксирующие бактерии — бактерии, способные усваивать молекулярный азот воздуха. 

Азотфиксирующие бактерии могут быть как аэробами, так и анаэробами, свободно живущими в почве или в симбиозе с растениями. Они имеют очень важное значение в круговороте азота в природе, особенно в снабжении доступными формами азота растений, не способных усваивать его из воздуха.

Azotobacter chroococcum — бактерии, способные в результате азотфиксации переводить газообразный азот в форму, доступную для усваивания растениями

Эти бактерии, способные усваивать азот воздуха и превращать его в аммиак, а затем в аминокислоты, поселяются в корнях растений. Присутствие бактерий вызывает разрастание тканей корня и образование утолщений.

Утолщения на корнях называются клубеньками, поэтому азотфиксирующие бактерии также называют клубеньковыми. Растения в симбиозе с этими бактериями могут произрастать на почвах, бедных азотом, и обогащать им почву.

Гнилостные бактерии широко распространены в почве, воздухе, воде, животных и растительных организмах. Поэтому любой подходящий субстрат быстро подвергается гниению. Гнилостные бактерии разлагают органические соединения, содержащие атомы азота, до аммиака. 

Денитрифицирующие бактерии — бактерии, восстанавливающие нитраты до молекулярного азота. 

Все денитрифицирующие бактерии — аэробы и могут окислять органическое вещество за счёт кислорода воздуха, но, попадая в анаэробные условия, они используют кислород нитратов как акцептор электрона. Распространены в почве, воде и грунте водоёмов.

Источник:

Азот (N): такой важный, такой нужный

Азот — он же в таблице Менделеева N (он же — первая буква в аббревиатуре NPK на многочисленных упаковках с удобрениями).

Прежде чем подробно разобрать роль и формы азота в удобрениях, нужно напомнить, что он относится к группе МАКРОэлементов.

Азот как и фосфор и калий напрямую участвуют в формировании основных тканей растения, отвечают за фазы развития (рост, вегетация, цветение, плодоношение) и скорость роста.

Зачем растению азот?

Если бы художник захотел нарисовать картинку благоухающего сада из элементов таблицы Менделеева, то вместо зелени листвы, стеблей и молодых побегов была бы буква N — азот. Именно этот летучий газ участвует через различные соединения в формировании хлорофилла — того самого белка, который принимает участие в фотосинтезе и дыхании растения.

Если азота достаточно — листва имеет насыщенный изумрудный цвет, который вкупе с хорошим поливом может отливать глянцем. Как только азота становится мало, растение бледнеет вплоть до чахлой желтизны, а новые побеги растут медленно или практически прекращают рост.

НА ФОТО: Разница между растениями, получавшими азот в процессе выращивания и теми, что росли на бедных почвах — очевидна

Также принято считать, что за плодоношение отвечает фосфор, и именно его присутствие будет влиять на урожай. Это действительно так, но в большей степени в вопросе качества урожая. За количество будет отвечать азот.

Чем больше вегетативной массы наберет растение, тем больше цветочных почек появится на стеблях или в пазухах.

У некоторых растений азот напрямую влияет на формирование цветочных почек, особенно у двудомных с женскими и мужскими цветками (конопля, ива, лимонник, облепиха и многие другие).

Как понять, что растению не хватает азота?

Первый признак нехватки азота — чахлый, желтушный, вплоть до бледно-желтого, цвет листвы. Пожелтение начинается с краев листа по направлению к центру. При этом листовая пластинка утончается, становится мягкой, даже если соблюдается полив.

Очень похожие симптомы наблюдаются при нехватке серы (S), однако в случае с азотом нижние листья желтеют первыми. В запущенных случаях они высыхают и опадают — растение «вытягивает» все питательные вещества из них, чтобы отдать верхним побегам или плодам, если они имеются.

При нехватке серы опадения листвы снизу не наблюдается.

Причин нехватки может быть, как правило, две: или растение забыли подкормить (когда и как подкармливать — ниже) или грунт сильно закислен, и кислая реакция среды нарушает всасываемость азота. Также в кислой среде нехватка азота может мимикрировать под хлороз — недостаток железа или магния. Однако в данном случае это непринципиально — грунт требует решительной замены или обновления.

Какой азот продают в магазинах и какой из них лучше?

Для каждого садовода этот вопрос, пожалуй, самый главный. Однако давайте для начала разберемся, а какой в принципе азот бывает? Без этого будет трудно понять, что написано на упаковке.

Аммиачный или аммонийный азот (NH4)

Этот азот еще называют органическим азотом. Его действительно много в органических остатках разлагающегося вещества будто то навоз или опавшая листва.

Растения очень любят аммоний, так как он легко проникает в корни и в них же может превращаться с аминокислоты, которые и будут формировать листья и побеги растения.

Однако есть существенный минус: несмотря на все механизмы сопротивления, аммоний может проникать в клетку растения и оказывать на нее токсичный эффект.

В природе передозировка аммонием довольно редка, т.к. он довольно быстро «преобразуется» бактериями до нитратов NO3 (процесс нитрификации) и далее до нитритов (NO2) и вплоть до чистого азота, который быстро улетучивается из почвы.

В саду или огороде аммиачный азот также быстро покидает почву, если только владелец участка не применил чистый, свежий навоз в большом количестве. В этом случае и происходит т.н. «сжигание» корней или всего растения.

В комнатных условиях органический азот следует использовать по-минимуму, т.к. проконтролировать нужную дозировку довольно сложно.

ВАЖНО: на упаковках удобрений для комнатных растений аммиачный азот крайне редко указывается формулой (NH4) или формулировкой. Как правило, используется органическая форма: некий экстракт (например, экстракт водорослей) или жидкая форма чистого органического удобрения («биогумус»), или гелеобразная масса («сапропель» — донный ил) и т.д.

Для сада и огорода применяется минеральная форма — сульфат аммония (NH4)2SO4. Большое преимущество этого удобрения в том, что оно также содержит серу.

Вместе с азотом она участвует в синтезе важных аминокислот, включая незаменимые. Сульфат аммония входит в состав популярной сегодня марки удобрения «Акварин» (номера 6 и 7 подходят для сада и огорода).

Это удобрение содержит приблизительно 25% аммонийного и 75% нитратного азота.

Нитратный азот (NO3)

Если органический азот растение старается сразу пустить в дело, не затрачивая энергии, то с нитратом картина совершенно противоположная. Практически любая культура жадно запасает нитраты в тканях в количествах порой превышающих допустимые пределы! А всему виной — высокая подвижность азота в биосфере.

Сегодня коровка плюхнула лепешку, на нее тут же набрасываются бактерии (а чуть позже и насекомые), которые переводят азот из органической в минеральную форму NO3. Но и эта форма долго не задерживается: то, что не успели забрать растения, уже другие бактерии доводят до нитритной NO2 формы, а потом и до азота.

Плюс нитрата — безвредность для растения. Минус — необходимость света и тепла, благодаря которым нитрат в листьях восстанавливается до аммония (точнее различных аминов NH2) и далее — до аминокислот и белков.

Как итог: в неблагоприятных условиях растение будет стремиться накапливать нитраты, чтобы использовать их, когда ситуация наладится.

В комнатных условиях нитратный азот — настоящее решение. Он указывается формулой на упаковке NO3 и сопровождается соответствующим текстом. Дозировки рассчитаны заранее для периодов покоя и активного роста. Ошибиться невозможно.

В саду и огороде нитратный азот используется сразу после начала сокодвижения (что соответствует температуре почвы около +15°С). Важно не упустить этот момент и обеспечить растение элементом, из которого уже в самые ближайшие дни начнут строиться новые побеги и листья.

Заканчивают применение азотных удобрений в июле, а точнее — сразу после завершения периода вегетации (деревья и кустарники замедляют рост, начинается плодоношение). В зиму сад отправляют без азотной подкормки или делают это поздней осенью, перед заморозками и органической формой, которая задержится в почве подольше.

Также не забываем, что зимы в последнее время теплеют, что не лучшим образом сказывается на удержании азота в почве.

В обиходе нитратный азот известен как селитра, из которой наиболее популярна в России — калийная (или «калиевая») селитра. Эта форма нитратного азота подходит как для садовых, так и для комнатных растений. Обеспечивает легкоусвояемым азотом и калием.

Амидный азот CO(NH2)2, карбамид или просто мочевина

Богатое, биогенное (то есть полученное в том числе органическим путем) удобрение, которое может содержать до 46% азота. Для использования в грунте в последнее время используется редко, т.к.

вездесущие «уреазные» бактерии быстро переводят драгоценную мочевину в карбонат аммония более известный в пищевой промышленности как разрыхлитель теста. Вот таким «разрыхлителем» в советские годы «удобряли» поля, пока не осознали потери азота. Сегодня мочевина используется в растворах для опрыскивания.

Разумеется, лучшее ее применение – на полях и в больших садах. В частной практике применяется редко, поэтому и на полках обычных магазинов практически не встречается.

Мочевина — прекрасное средство против парши и некоторых других патогенных грибков.

Подробнее об использовании мочевины в качестве фунгицида читайте в нашей статье “Октябрь — пора приводить сад в порядок”

Источник: https://dmnesterov.ru/bolezni/gde-i-kak-berut-bakterii-neobhodimyj-dlya-zhizni-azot.html

Азотфиксирующие бактерии: среда обитания, функции

Азотсодержащие бактерии

Бактерии – понятие, хорошо знакомое каждому. Получение сыра и йогурта, антибиотиков, очистка сточных вод – все это делают возможным одноклеточные бактериальные организмы. Познакомимся с ними поближе.

Кто такие бактерии?

Представители этого царства живой природы представляют собой единственную группу прокариот – организмов, клетки которых лишены ядра. Но это не значит, что они совсем не содержат наследственной информации. Молекулы ДНК свободно находятся в цитоплазме клетки и не окружены оболочкой.

Поскольку размеры их микроскопические – до 20 мкм, бактерии изучает наука микробиология. Ученые выяснили, что прокариоты могут быть одноклеточными или объединяться в колонии. Они имеют достаточно примитивное строение.

Помимо ядра бактерии лишены всех типов пластид, комплекса Гольджи, ЭПС, лизосом и митохондрий.

Но несмотря на это, бактериальная клетка способна осуществлять важнейшие процессы жизнедеятельности: анаэробное дыхание без использования кислорода, гетеротрофное и автотрофное питание, бесполое размножение и образование цисты во время переживания неблагоприятных условий.

Классы бактерий

В основу классификации положены разные признаки. Один из них – форма клеток. Так, вибрионы имеют вид запятой, кокки – округлую форму. Вид спирали имеют спириллы, а палочковидную форму – бациллы.

Кроме того, бактерии объединяют в группы в зависимости от особенностей строения клетки. Настоящие способны образовывать слизистую капсулу вокруг собственной клетки и оснащены жгутиками.

Цианобактерии, или синезеленые водоросли, способны к фотосинтезу и вместе с грибами входят в состав лишайников.

Многие виды бактерий способны к симбиозу – взаимовыгодному сожительству организмов. Азотфиксаторы поселяются на корнях бобовых и других растений, образуя клубеньки. Какую функцию выполняют клубеньковые бактерии, легко догадаться. Они преобразуют атмосферный азот, который так необходим растениям для развития.

Способы питания

Прокариоты являются группой организмов, которым доступны все способы питания. Так, зеленые и пурпурные бактерии питаются автотрофно, за счет солнечной энергии.

За счет наличия пластид они могут быть окрашены в разные цвета, но обязательно содержат хлорофилл. Бактериальный и растительный фотосинтез существенно отличаются. У бактерий вода не является обязательным реагентом.

Донором электронов может служить водород или сероводород, поэтому кислород в ходе этого процесса не выделяется.

Большая группа бактерий питается гетеротрофно, т. е. готовыми органическими веществами. Такие организмы используют для питания остатки отмерших организмов и продукты их жизнедеятельности. Бактерии гниения и брожения способны разлагать все известные органические вещества. Такие организмы еще называют сапротрофами.

Некоторые бактерии растений могут образовывать симбиоз с другими организмами: вместе с грибами входят в состав лишайников, взаимовыгодно сосуществуют с корнями бобовых азотфиксирующие клубеньковые бактерии.

Хемотрофы

Еще одной группой по типу питания являются хемотрофы. Это разновидность автотрофного питания, в ходе которого вместо солнечной энергии используется энергия химических связей различных веществ. Азотфиксирующие бактерии относятся к таким организмам. Они окисляют некоторые неорганические соединения, при этом обеспечивая себя необходимым количеством энергии.

Азотфиксирующие бактерии: среда обитания

Подобным образом питаются и микроорганизмы, способные преобразовывать соединения азота. Их называют азотфиксирующие бактерии. Несмотря на то что обитают бактерии повсеместно, среда обитания именно этого вида – почва, а точнее корни бобовых растений.

Строение

Какую функцию выполняют клубеньковые бактерии? Она обусловлена их строением. Азотфиксирующие бактерии хорошо видны невооруженным глазом. Поселяясь на корнях бобовых и злаковых, они проникают в растение. При этом образуются утолщения, внутри которых происходит обмен веществ.

Стоит сказать, что азотфиксирующие бактерии относятся к группе мутуалистов. Их сосуществование с другими организмами является взаимовыгодным. В ходе фотосинтеза растение синтезирует углевод глюкозу, необходимую для процессов жизнедеятельности. Бактерии не способны к такому процессу, поэтому готовые сахара получают от бобовых.

Растениям для жизни необходим азот. Этого вещества в природе достаточно большое количество. Например, содержание азота в воздухе составляет 78 %. Однако в таком состоянии растения не способны поглощать это вещество. Азотфиксирующие бактерии усваивают атмосферный азот и переводят его в форму, удобную для растений.

Производительность

Какую функцию выполняют азотфиксирующие бактерии, можно убедиться на примере хемотрофной бактерии азоспириллум. Живет этот организм на корнях злаковых: ячменя или пшеницы. Его по праву называют лидером среди продуцентов азота. На гектар земли он способен отдать до 60 кг этого элемента.

Азотфиксирующие бактерии бобовых, такие как ризобитумы, синоризобиумы и другие, также хорошие “труженики”. Они способны обогатить гектар земли азотом массой до 390 кг. На многолетних бобовых растениях обитают победители азотообразования, производительность которых достигает до 560 кг в расчете на гектар пахотных земель.

Процессы жизнедеятельности

Все азотфиксирующие бактерии по особенностям процессов жизнедеятельности можно объединить в две группы. Первая группа является нитрифицирующей.

Суть обмена веществ в этом случае заключается в цепочке химических превращений. Аммоний, или аммиак, превращается в нитриты – соли азотной кислоты.

Нитриты, в свою очередь, превращаются в нитраты, тоже являющиеся солями этого соединения. В виде нитратов азот лучше усваивается корневой системой растений.

Вторая группа называется денитрификаторами. Они осуществляют обратный процесс: нитраты, содержащиеся в почве, превращают в газообразный азот. Таким образом происходит круговорот азота в природе.

К процессам жизнедеятельности также относят и процесс размножения. Происходит он путем деления клеток надвое. Гораздо реже – путем почкования. Характерен для бактерий и половой процесс, который называется конъюгация. При этом происходит обмен генетической информацией.

Поскольку корневая система выделяет много ценных веществ, бактерий на ней поселяется очень много. Они преобразуют растительные остатки в вещества, которые способны впитать растения. В результате слой почвы вокруг приобретает определенные свойства. Его называют ризосферой.

Пути проникновения бактерий в корень

Существует несколько способов внедрения бактериальных клеток в ткани корневой системы. Это может произойти вследствие повреждения покровных тканей или в местах, где клетки корня молодые. Зона корневых волосков также является путем проникновения хемотрофов внутрь растения.

Далее корневые волоски инфицируются и в результате активного деления бактериальных клеток образуются клубеньки. Внедрившиеся клетки образуют инфекционные нити, которые продолжают процесс проникновения в растительные ткани. С помощью проводящей системы бактериальные клубеньки связаны с корнем.

С течением времени в них появляется особое вещество – легоглобин.

К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Значение хемотрофов

Люди давно заметили, что, если перекопать бобовые растения с почвой, урожай на этом месте будет лучше. На самом деле суть не в процессе вспахивания. Такая почва больше обогащается азотом, столь необходимым для роста и развития растений.

Если лист называют фабрикой по производству кислорода, то азотфиксирующие бактерии могут по праву называться фабрикой по производству нитратов.

Еще в 19 веке ученые обратили внимание на удивительные способности бобовых растений. Из-за недостатка знаний их приписывали только растениям и не связывали с другими организмами. Было высказано предположение, что листья могут фиксировать атмосферный азот.

В ходе экспериментов было выяснено, что бобовые, которые выросли в воде, такую способность утрачивают. Более 15 лет этот вопрос оставался загадкой. Никто не догадывался, что осуществляют все это азотфиксирующие бактерии, среда обитания которых не была изучена. Оказалось, что дело в симбиозе организмов.

Только вместе бобовые и бактерии могут производить нитраты для растений.

Сейчас ученые выявили более 200 растений, которые не относятся к семейству бобовых, но способны образовать симбиоз с азотфиксирующими бактериями. Картофель, сорго, пшеница также обладают ценными свойствами.

Источник: https://FB.ru/article/225017/azotfiksiruyuschie-bakterii-sreda-obitaniya-funktsii

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: