Азотное дыхание

Содержание
  1. Кессонная болезнь
  2. Кессонная болезнь возникает
  3. Основные признаки развития кессонной болезни
  4. Причины возникновения кессонной болезни
  5. Развитие декомпрессионной болезни является
  6. Признаки кессонной болезни
  7. Первая помощь при кессонной болезни
  8. Лечение кессонной болезни
  9. Выбор режима лечебной рекомпрессии
  10. Предупреждение декомпрессионной болезни
  11. ссылкой:
  12. Дайвинг, газы. Понимание принципов за 10 минут (keynotes)
  13. 1. Механическое воздействие на органы и системы
  14. 2. Насыщение тканей газами
  15. 3. Биохимическое воздействие газов
  16. Кислород
  17. Азот
  18. Гелий и другие газы
  19. Практическое заключение
  20. Дыхательная арматура
  21. Функции дыхательной арматуры резервуара
  22. «Замедленное дыхание»: как дыхательная арматура резервуара снижает потери
  23. Особенности работы дыхательной арматуры резервуара
  24. Классификация
  25. КПГ
  26. Вентиляционный патрубок вместо клапана
  27. Отравление азотом: интоксикация организма, симптомы и первая помощь
  28. Влияние азота на организм
  29. Причины отравления азотом
  30. Вред азота для организма человека
  31. Первая помощь при отравлении азотом
  32. Лечение
  33. Можно ли дышать азотом?
  34. Профилактика

Кессонная болезнь

Азотное дыхание

Под кессонной болезнью(она так же и декомпрессионная болезнь) понимается комплекс патологических изменений,обусловленных возникновением в крови и других тканях организма газовых пузырьков,нарушающих нормальное кровообращение и оказывающих травмирующее воздействие на клетки тканей организма.

Кессонная болезнь наступает,когда азот или другой инертный газ дыхательной смеси,растворённый в крови под высоким давлением,не успевает полностью удалиться в процессе декомпрессии.

Кессонная болезнь возникает

Находясь в воде,водолаз дышит воздухом,кислородом,гелиокислородной или воздушно-гелиевой смесью.

Величина давления этих газовых смесей соответствует глубине погружения водолаза.В состав газовых смесей,которыми он дышит,входит обязательно кислород(определенное количество),тот или иной индифферентный газ-разбавитель кислорода(азот или гелий) и небольшое количество углекислого газа.

Ткани человеческого организма в значительной степени состоят из воды(65–70%).Во всех жидкостях газы растворяются в количествах,соответствующих коэффициенту растворимости этих газов,температуре жидкости и давлению газов над жидкостью.

Чем выше температура жидкости тем растворимость меньше.Чем больше давление газа над жидкостью,тем растворимость его будет пропорционально меньше.

Если сделать небольшой расчет,что в организме человека при весе в 70 кг и при атмосферном давлении 760 мм.рт.ст. в растворенном состоянии находится азота 1 см³.

Получается,в тканях и крови водолаза при работе под водой газы будут растворяться,которыми он дышит,в значительном количестве.

Возьмем небольшой пример:глубина 90 метров(это 10 атмосфер) в организме водолаза может раствориться 1 х 10 = 10 л азота.То есть,при развитии декомпрессионной болезниосновную роль играет насыщение и рассыщение организма водолаза индифферентными газами.

Процесс растворения газов в крови и тканях организма называется насыщением(сатурация),а рассыщение(десатурация)-это освобождение организма от растворенных индифферентных газов.

В периоды погружения и пребывания на грунте возникают процессы насыщения организма индифферентными газами,а при подъеме пловца процесс рассыщения или освобождения от индифферентных газов.

Кислород является химически и биологически активным газом.Нельзя без него представить обмен веществ в организме–невозможна жизнь всего живого.

Из-за химических процессов,проходящих в организме беспрерывно,образуется тепло и другие виды энергии.Большое количество кислорода потребляется организмом с образованием конечных продуктов окисления питательных веществ(вода,углекислый газ и т.п).

Исследования показывают,что потребление количества кислорода организмом водолаза зависит от тяжести работы и температуры воды.При средней тяжести работы под водой потребление примерно 1,5-2 литра в минуту.В растворенном виде кислород в тканях организма водолаза почти не остается.Поэтому если водолаз использует для дыхания чистый кислород,то у него никогда не возникнет кессонной болезни.

Углекислый газ-это один из конечных продуктов обмена веществ и выделяется организмом через легкие почти в таком же количестве(по объему),в каком потребляется кислород.

Организм водолаза автоматически удаляет из своих внутренних сред почти весь углекислый газ.Если только его накапливается в тканях больше,водолаз чувствует одышку и появляется частое и глубокое дыхание и сердце начинает быстрее работать.

Индифферентные газы(азот и гелий)поэтому так и назвали,что не обладают химической активностью,и не оказывают почти никакого влияния на организм. (под высоким давлением азот и гелий на организм действуют наркотически и всегда механически)

Основные признаки развития кессонной болезни

  1. Возникновение газовых пузырьков непосредственно в тканях и закупорка мелких сосудов в органах.

2.Закупорка легочных капилляров газовыми пузырьками,доставляемыми в легкие потоком венозной крови

  • при незначительном количестве закупоренных капилляров появляются симптомы нарушения деятельности дыхательной системы.
  • при значительном количестве закупоренных капилляров при венозном застое,снижается насыщение крови кислородом и уменьшение выделения CO2 добавляются симптомы нарушения сердечной деятельности.

3.При большом количестве закупоренных капилляров вследствие почти полного прекращения перехода крови из правой половины сердца в левую,и сильного падения артериального давления,резкого уменьшения поступления кислорода в ткани,добавляются симптомы поражения нервной системы,так как она более чувствительна к недостатку кислорода.

4.При образовании в крови очень большого количества газовых пузырьков в правой половине сердца образуется «пена» и это ведет к остановке сердца.

Нарушение кровообращения в органах и тканях из-за образования в кровеносных сосудах тромбов вследствие реакции крови на инородное тело(газовый пузырек)

ПРИМЕЧАНИЕ: Все процессы возникновения декомпрессионной болезни развиваются одновременно и приводят к недостатку кислорода(гипоксии)как в отдельных органах и тканях,так и во всем организме.При этом степень тяжести заболевания и его форма зависят от количества газовых пузырьков.

Причины возникновения кессонной болезни

Основная причина это нарушение режима декомпрессии,которое может возникать в таких случаях как:

  • Неправильный выбор режима декомпрессии без учета условий водолазного спуска и состояния водолаза на время спуска.
  • Нарушение режима декомпрессии по глубинам и остановках,времени выдержки на них и составу ДГС в ходе декомпрессии.
  • Аварийное всплытие водолаза
  • Разгерметизация барокамеры,водолазного колокола,отсека водолазного подводного аппарата,кабины или салона самолета,шлюзового устройства кессона.

Как показывает практика,если даже после длительной работы на глубине 12 метров,водолаза можно поднимать без опасения,что он получит декомпрессионную болезнь.

Развитие декомпрессионной болезни является

Факторы ,способствующие развитию декомпрессионной болезни:

  • Слабая натренированность водолаза к физическому труду(на выносливость)и по специальности
  • Перенапряжение,при тяжелой работе,сильное течение,хождение по вязкому илистому грунту или нервно-психическая реакция.
  • Недостаточно опыта(лишние движения,волнение)
  • Особенность организма(предрасположенность к кессонной болезни)
  • Перенесенные декомпрессионные болезни(несколько раз)
  • Острые и хронические заболевания,последствие серьезных травм(особенно костей и суставов)
  • Повышенная концентрация углекислого газа во вдыхаемой ДГС
  • Нарушение режимов декомпрессии,режима труда и отдыха водолазов
  • Низкая температура окружающей среды,особенно в период декомпрессии
  • Высокая температура окружающей среды в период декомпрессии
  • Нарушение кровообращения в результате сдавливания кровеносных сосудов снаряжением.

Признаки кессонной болезни

Легкая степень:

  • Зуд кожи и изменение цвета(сыпь,пятна,синяки,мраморный вид)
  • Боль в мышцах,костях и суставах

Сама боль носит тупой и ноющий характер,а может и стать сверлящей и рвущей.Чаще перенесшие жаловались на боль в коленном плечевом и локтевых суставах.Легкая форма кессонной болезни появляется через 1-4 часа,а иногда и через 12 часов и более после спуска.

Средняя степень:

Проявляется через 0,30-1 час после спуска

  • Нарушения сердечной деятельности и дыхания,вплоть до прекращения
  • Сильная боль в суставах костях и мышцах
  • Кожные симптомы более выражены
  • Боль в животе,тошнота рвота и жидкий стул

Тяжелая степень:

  • Выраженные расстройства деятельности сердечно-сосудистой системы и дыхания сопровождаются нарушением функций центральной нервной системы
  • Вялость и апатия,мутное сознание
  • Очень слабый пульс
  • Дыхание частое,поверхностное,иногда периодическое
  • Поражение спинного мозга,что вызывает парезы и параличи нижних конечностей,расстройство функции тазовых органов-мочеиспускание и дефекации.
  • Поражение внутреннего уха,при котором пузырьки газа нарушают деятельность вестибулярного аппарата(синдром Меньера).
  • Нарушение равновесия тела и походка

Время появления признаков декомпрессионной болезни зависит от того,как был нарушен режим подъема на поверхность.

Первая помощь при кессонной болезни

  1. Пострадавшего положить так,чтобы его голова была ниже туловища(для того,чтобы газовые пузырьки не накапливались в сосудах головного мозга)
  2. Дать больному для дыхания кислород(применение кислородного аппарата)
  3. Немедленно поместить его в барокамеру и принять меры к вызову врача по водолазной медицине

Лечение кессонной болезни

Самым радикальным лечение кессонной болезни является лечебная рекомпрессия.Её проведение обязательно во всех случая болезни.

При повышении давления газовые пузырьки в организме больного уменьшаются в объёме соответственно величине внешнего давления и затем растворяются.

Чем раньше с момента появления признаков кессонной болезни будет начата рекомпрессия,тем эффективнее будут результаты.

Рекомпрессию можно проводить и в поздних случаях если она не была сделана своевременно.Бывали случаи,что рекомпрессия давала результаты даже через 72 часа после заболевания.

Водолаз получивший болезнь сразу же при выходе из воды(барокамеры)считается тяжелобольным и ему противопоказана физическая нагрузка(любая).Транспортировать водолаза необходимо на носилках к месту проведения лечебной рекомпрессии.

При лечении больного хорошее лечебное действие оказывает дыхание кислородом,как в барокамере так и на поверхности.Это ускоряет выведение из организма индифферентные газы и улучшает лечение.

Существуют и вспомогательные способы лечения,но они не заменяют лечебную рекомпрессию.Это применение тепла во всех видах,особенно горячий душ или ванна массажа и т.д.

При лечении рецидивов используются штатные системы полузамкнутой вентиляции водолазных барокамер.

Выбор режима лечебной рекомпрессии

При выборе режима необходимо руководствоваться:

  1. Глубина спуска перед заболеванием
  2. Признаками заболевания и их развитием
  3. Давлением в камере,при котором уменьшаются или полностью проходят признаки заболевания.

Предупреждение декомпрессионной болезни

Необходимо проводить мероприятия в двух направлениях:

  1. Подбирать правильно декомпрессионные режимы и точно исполнять их при подъёме
  2. Поддерживать свой организм в состоянии натренированности к физическому труду и производстве водолазных работ.

Для предупреждения возникновения заболевания необходимо:

  • Режим декомпрессии выбирать индивидуально для каждого спуска в соответствии с глубиной и временем работы на грунте
  • Исключить превышение времени пребывания на грунте
  • Строго соблюдать подъём водолаза до первой остановки по режиму декомпрессии и выдерживать глубину последующих остановок.
  • При нахождении в барокамере периодически менять положение тела,для равномерного рассыщения организма от индифферентных газов.
  • Соблюдать режим кислородной декомпрессии,избегать подсоса воздуха из отсека барокамеры,не нарушать периодичности промывок системы «аппарат–легкие»

ссылкой:

Источник: https://vodolazik.ru/2020/04/22/kessonnaja-bolezn.html

Дайвинг, газы. Понимание принципов за 10 минут (keynotes)

Азотное дыхание

Хотелось бы обобщить информацию о принципах дайвинга в части газов для дыхания в формате keynotes, т.е. когда понимание нескольких принципов избавляет от необходимости запоминания множества фактов.

Итак, для дыхания под водой необходим газ. Как наиболее простой вариант — запас воздуха, представляющий собой смесь кислорода (∼21%), азота (∼78%) и других газов (∼1%).

Главным фактором является давление окружающей среды. Из всех возможных единиц измерения давления мы будем использовать «абсолютную техническую атмосферу» или АТА. Давление на поверхности составляет ∼1 АТА, каждые 10 метров погружения в воду добавляют к нему ∼1 АТА.

Для дальнейшего разбора важным является понимание, что такое парциальное давление, т.е. давление отдельно взятого компонента газовой смеси. Общее давление газовой смеси является суммой парциальных давлений её компонентов.

Парциальное давление и растворение газов в жидкостях описываются законами Дальтона и имеют самое прямое отношение к дайвингу, ибо человек на большую часть состоит из жидкости.

Хотя парциальное давление пропорционально молярному соотношению газов в смеси, для воздуха можно считать парциальное давление по объемной или весовой концентрации, погрешность составит менее 10% .

При погружении давление воздействует на нас всеобъемлюще. Регулятор поддерживает давление воздуха в системе дыхания, примерно равное давлению окружающей среды, меньшее ровно на столько, на сколько необходимы для «вдыхания».

Так, на глубине в 10 метров вдыхаемый из баллона воздух имеет давление около 2 АТА. Аналогичное абсолютное давление будет наблюдаться во всем нашем организме.

Таким образом, парциальное давление кислорода на этой глубине составит ∼0,42 АТА, азота ∼1,56 АТА

Воздействие давления на организм заключается в следующих ключевых факторах.

1. Механическое воздействие на органы и системы

Его мы рассматривать подробно не будем, вкратце — человеческий организм имеет ряд заполненных воздухом полостей и резкое изменение давления в любую сторону вызывает нагрузку на ткани, мембраны и органы вплоть до механических повреждений — баротравм.

2. Насыщение тканей газами

При погружении (увеличении давления) парциальное давление газов в дыхательном тракте — выше чем в тканях. Таким образом газы насыщают кровь, а через кровоток насыщаются все ткани организма.

Скорость насыщения различна для разных тканей и характеризуется «периодом полунасыщения», т.е. временем, в течение которого при постоянном давлении газа разница парциальных давлений газа и тканей уменьшается вдвое.

Обратный процесс называют «рассыщением», он происходит при всплытии (уменьшении давления).

  В этом случае парциальное давление газов в тканях выше, чем давление в газа в легких, идет обратный процесс — газ из крови выделяется в легких, кровь с уже меньшим парциальным давлением циркулирует по организму, из тканей газы переходят в кровь и снова по кругу. Газ всегда движется от большего парциального давления к меньшему.

Принципиально важно, что разные газы имеют разную скорость насыщения/рассыщения, обусловленную их физическими свойствами.

Растворимость газов в жидкостях тем больше, чем выше давление. В случае, если количество растворенного газа больше предела растворимости при данном давлении — происходит выделение газа, в том числе концентрация в виде пузырьков. Мы это наблюдаем каждый раз, как вскрываем бутылку газированной воды.

Так как скорость выведения газа (рассыщения тканей) ограничена физическими законами и газовым обменом через кровь, слишком быстрое падение давления (быстрое всплытие) может привести к образованию пузырьков газа непосредственно в тканях, сосудах и полостях организма, нарушая его работу вплоть до летального исхода.

Если давление падает медленно, то организм успевает вывести «лишний» газ за счет разницы парциальных давлений.

Для расчетов этих процессов используются математические модели тканей организма, наиболее популярной является модель Альберта Бюльмана, которая учитывает 16 видов тканей (компартментов) со временем полунасыщения/полурассыщения от 4 до 635 минут.

Наибольшую опасность представляет инертный газ, имеющий максимально большое абсолютное давление, чаще всего это — азот, который составляет основу воздуха и не участвует в метаболизме.

По этой причине основные расчеты в массовом дайвинге проводятся по азоту, т.к. воздействие кислорода в плане насыщения на порядки меньше, при этом оперируют понятием «азотная нагрузка», т.е.

остаточное количество растворенного в тканях азота.

Таким образом, насыщение тканей зависит от состава газовой смеси, давления и продолжительности его воздействия.

Для начальных уровней дайвинга практикуются ограничения по глубине, продолжительности погружения и минимальному времени между погружениями, заведомо не допускающие ни при каких условиях насыщения тканей до опасных уровней, т.е. бездекомпрессионные погружения, и даже в этом случае принято выполнять «остановки безопасности» .

«Продвинутые» дайверы используют дайв-компьютеры, которые динамически рассчитывают насыщение по моделям в зависимости от газа и давления, в том числе рассчитывают «компрессионный потолок» — глубину, всплытие выше которой потенциально опасно исходя из текущего насыщения. При сложных погружениях компьютеры дублируются, не говоря уже о том, что одиночные погружения как правило не практикуются.

3. Биохимическое воздействие газов

Наш организм максимально адаптирован к воздуху при атмосферном давлении. При увеличении давления газы, даже не участвующие в метаболизме воздействуют на организм самым разным образом, при этом воздействие зависит от парциального давления конкретного газа. Для каждого газа существуют свои пределы безопасности.

Кислород

Являясь ключевым участником нашего метаболизма, кислород — единственный газ, имеющий не только верхний, но и нижний предел безопасности.

Нормальное парциальное давление кислорода ∼0,21 АТА.

Потребность в кислороде сильно зависит от состояния организма и физических нагрузок, теоретический минимально необходимый уровень для поддержания жизнедеятельности здорового организма в состоянии полного покоя оценивается в ∼0,08 АТА, практический — в ∼0,14 АТА. Снижение уровня кислорода от «номинального» в первую очередь сказывается на способности к физической активности и может вызвать гипоксию, или кислородное голодание.

В то же время высокое парциальное давление кислорода вызывает широкий спектр негативных последствий — кислородное отравление или гипероксию. Особую опасность при погружении имеет ее судорожная форма, выражающуюся в поражении нервной системы, судорогах, что влечет за собой риск утопления.

Для практических целей дайвинга принято считать пределом безопасности ∼1,4 АТА, пределом умеренного риска — ∼1,6 АТА. При давлении выше ∼2,4 АТА в течение длительного времени вероятность кислородного отравления стремиться к единице.

Таким образом, несложным делением предельного уровня кислорода 1,4 АТА на парциальное давление кислорода в смеси можно определить максимальное безопасное давление среды и установить, что абсолютно безопасно дышать чистым кислородом (100%, 1 АТА ) можно на глубинах до ∼4 метров (!!!), сжатым воздухом (21%, 0,21 АТА) — до ∼57 метров, стандартным «нитрокс-32» с содержанием кислорода 32% (0,32 АТА) — до ∼34 метров. Аналогично можно посчитать пределы для умеренного риска.

Говорят, именно этому явлению обязан своим именем «нитрокс» , так как изначально это слово обозначало дыхательные газы с пониженным содержанием кислорода для работы на больших глубинах, «nitrogen enriched», и только потом оно стало расшифровываться как «nitrogen-oxigen» и обозначать смеси с повышенным содержанием кислорода.

Необходимо принимать во внимание, что повышенное парциальное давление кислорода в любом случае оказывает воздействие на нервную систему и легкие, причем это разные виды воздействия.

Кроме того, воздействие имеет свойство накапливаться при серии погружений.

Для учета воздействия на ЦНС используется понятие «кислородного лимита» как расчетной единицы, с помощью которой определяются безопасные лимиты для разового и суточного воздействия. Подробно с таблицами  и расчетами можно ознакомиться здесь.

Помимо этого, повышенное давление кислорода негативно воздействует на легкие, для учета этого явления используются «единицы кислородной выносливости», которые рассчитываются по специальным таблицам, соотносящим парциальное давление кислорода и количество «единиц в минуту». Для примера, 1.2 АТА дает нам 1.32 OTU в минуту. Признанный лимит безопасности составляет 1425 единиц в сутки.

Из вышесказанного в частности должно быть понятно, что для безопасного пребывания на больших глубинах требуется смесь с пониженным содержанием кислорода, которая непригодна для дыхания при меньшем давлении. Например, на глубине 100 метров (11 АТА) концентрация кислорода в смеси не должна превышать 12%, а на практике будет еще ниже. Дышать такой смесью на поверхности невозможно.

Азот

Азот не метаболизируется организмом и не имеет нижней границы. При повышенном давлении азот оказывает отравляющее воздействие на нервную систему, сходное с наркотическим или алкогольным опьянением, известное как «азотный наркоз«.

Механизмы воздействия точно не выяснены, границы воздействия сугубо индивидуальны, и зависят как от особенностей организма, так и от его состояния. Так, известно, что усиливает воздействие состояние усталости, похмелья, все виды угнетенного состояния организма типа простудных заболеваний и т.д.

Незначительные проявления в виде состояния, сравнимого с легким опьянением возможны на любых глубинах, действует эмпирическое «правило мартини», согласно которому воздействие азота сравнимо с бокалом сухого мартини натощак на каждые 10 метров глубины, что не представляет опасности и добавляет хорошего настроения. Накопленный при регулярных погружениях азот так же влияет на психику сродни легким наркотикам и алкоголю, чему автор сам свидетель и участник. Проявляется в ярких и «наркотических» снах, в частности, действует в пределах нескольких часов. И таки да, дайверы — немного наркоманы. Азотные.

Опасность представляют сильные проявления, которые характеризуются стремительным нарастанием вплоть до полной потери адекватности, ориентации в пространстве и времени, галлюцинаций, что может привести к гибели.

Человек может запросто рвануть на глубину, потому что там клево или он там что-то якобы увидел, забыть, что он под водой и «вдохнуть полной грудью», выплюнув загубник и т.д. Само по себе воздействие азота не летально и даже не вредно, однако последствия в условиях погружения могут быть трагичны.

Характерно, что при снижении давления эти проявления так же стремительно проходят, иногда достаточно подняться всего на 2..3 метра чтобы «резко протрезветь».

Вероятность сильного проявления на глубинах, принятых для рекреационного дайвинга начального уровня (до 18 м, ∼2,2 АТА ) оценивается как очень низкая.

По имеющейся статистике случаи тяжелого отравления становятся довольно вероятны с 30 метров глубины (∼3,2 АТА), и далее вероятность растет по мере роста давления.

В то же время люди с индивидуальной устойчивостью могут не испытывать проблем и на куда больших глубинах.

Единственным способом противодействия является постоянный самоконтроль и контроль напарника с немедленным уменьшением глубины в случае подозрения на азотное отравление. Использование «нитрокса» снижает вероятность азотного отравления, естественно, в пределах ограничений по глубинам, обусловленных кислородом.

Гелий и другие газы

В техническом и профессиональном дайвинге используют и другие газы, в частности, гелий. Известны примеры использования в глубинных смесях водорода, и даже неона.

Эти газы отличаются высокой скорость насыщения/рассыщения, отравляющие эффекты гелия наблюдаются при давлении более 12 АТА и могут быть, как ни парадоксально, компенсированы азотом.

Однако широкого применения они не имеют за счет высокой стоимости, поэтому столкнуться с ними дайверу средней руки фактически невозможно, а уж если читателя действительно интересуют такие вопросы — то ему уже надо использовать профессиональную литературу, а не этот скромный обзор.

При использовании любых смесей логика расчетов остается такой же, как описано выше, только используются специфические для каждого газа лимиты и параметры, а для глубоких технических погружений обычно используются несколько разных составов: для дыхания на пути вниз, работы внизу и поэтапного пути вверх с декомпрессией, составы этих газов оптимизируются исходя из описанной выше логики их движения в организме.

Практическое заключение

Понимание этих тезисов позволяет придать осмысленность многим даваемым на курсах ограничениям и правилам, что совершенно необходимо как для дальнейшего развития, так и для правильного их нарушения.

Нитрокс рекомендован к использованию при обычных погружениях, ибо он снижает азотную нагрузку на организм даже если Вы остаетесь полностью в пределах ограничений рекреационного дайвинга, это лучшее самочувствие, больше удовольствия, легче последствия. Однако, если Вы собираетесь нырять глубоко и часто — надо помнить не только о его преимуществах, но и о возможной кислородной интоксикации. Всегда лично проверяйте уровни кислорода и определяйте свои лимиты.

Азотное отравление — наиболее вероятная из проблем, с которыми можно столкнуться, всегда будьте внимательны к себе и партнеру.

Отдельно хотелось бы обратить внимание, что прочтение данного текста не означает, что читатель освоил полный набор информации для понимания работы с газами при сложных погружениях. Для практического применения этого совершенно недостаточно. Это только стартовая точка и базовое понимание, не более того.

Всегда оставайтесь в пределах своих знаний и физических возможностей! Удачи!

Источник: https://pavlyuts.ru/posts/329

Дыхательная арматура

Азотное дыхание

Дыхательная арматура Details Still : 26 Автуст 2019 Создано: 26 Автуст 2019 22 Июль 2020 Details Создано: Понедельник, 26 Автуст 2019 12:19 Среда, 22 Июль 2020 17:18 : Понедельник, 26 Автуст 2019 12:19 Still

Дыхательная арматура резервуаров для нефти и нефтепродуктов – обязательный элемент системы оснащения парков, единственный эффективный способ предупреждения аварий в результате деформации емкости. Вероятность такой деформации повышается на этапах приемки и раздачи вещества из-за избыточной нагрузки или создания вакуума.

Функции дыхательной арматуры резервуара

Оснащение дыхательной арматурой резервуаров преследует две основные цели.

  1. Профилактика разгерметизации (проще говоря, разрыва) емкости при закачке материала. На этом этапе нагрузка на стенки сосудов значительно возрастает, превышая показатели атмосферного давления. Поскольку цистерны на это не рассчитаны, они могут просто разойтись по сварным швам или взорваться, когда сила нагрузки изнутри достигнет критического значения. Снизить нагрузку и позволяет дыхательная арматура резервуаров. Она реализована на двух уровнях:
    • Дыхательный клапан открывается, чтобы сбросить часть газовой смеси и снизить давление. Обычно это происходит на отметке 0,002 МПа.
    • Предохранительный клапан «страхует» своего «коллегу», открывая дополнительный канал для отвода взвеси при нагнетании давления до 0,002 МПа +5–10%.
  2. Защита от деформаций емкости при создании вакуума. Здесь действует обратная закономерность (поток идет не изнутри наружу, а наоборот, в пространство сосуда поступает воздух извне, выравнивая давление и предупреждая смятие емкости внутрь). Порядок срабатывания дыхательной арматуры резервуаров для нефти и нефтепродуктов тот же (первым открывается дыхательный клапан, если обеспечиваемая им скорость поступления воздуха ниже, чем требуется, его поддерживает предохранительный механизм).

«Замедленное дыхание»: как дыхательная арматура резервуара снижает потери

«Бонусом» к профилактике серьезных аварий, разрыва и смятия конструкций при использовании арматуры идет сокращение потерь нефтепродуктов, связанных с испарением. За счет перекрытия каналов движения газов в закрытом состоянии она исключает эффект вентиляции резервуара (выветривания).

Плюс, само открытие дыхательных клапанов происходит не ровно в момент критической нагрузки, а чуть позже. Это запаздывание (его длительность зависит от типа устройств) и обеспечивает снижение объема «дыхания» емкостей резервуарного парка. Сниженный объем «вдоха – выдоха» (поступления воздуха и отведения газовой взвеси), в свою очередь, сокращает потери от испарения.

Особенности работы дыхательной арматуры резервуара

Принцип следующий.

  • На этапе закачки (повышение нагрузки) затвор дыхательного клапана резервуара открывается автоматически (он фиксирует превышение нормального давления). Как только показатели выравниваются (приходят к нормативным), затвор автоматически возвращается в исходное положение (отток газовой взвеси прекращается).
  • Во время слива образуется вакуум. Когда он достигает максимально установленного значения, система приходит в действие, открывая канал для притока воздуха. При установлении допустимых показателей он возвращается в положение «закрыто».
  • В каждом из двух случаев срабатывание устройства происходит с короткой задержкой (не в момент превышения показателей, а с опозданием). За счет этого объем отведенной или поступившей газовой и воздушной взвеси минимален. Простой прием позволяет снизить потери нефтепродукта в результате испарения, одновременно эффективно регулируя давление в емкости.

Классификация

Основной каталог дыхательной арматуры резервуаров для нефтепродуктов представлен 7 разными типами клапанной продукции.

ООО «СпецНефтеМаш» предлагает полный ассортимент таких устройств и бесплатную профессиональную помощь в их выборе.

Функционально оборудование резервуаров для нефтепродуктов аналогично, отличия заключаются в условиях использования, производительности и предельных значениях опоздания срабатывания.

Типы дыхательных клапанов:

  • КДС – совмещенный механизм (возможна подстройка под режим работы предохранительных устройств). Дыхательный клапан для оборудования резервуаров вертикального размещения со светлыми продуктами нефти. Устанавливается в паре с диском-отражателем и огнепредохранителем.
  • СМДК – совмещенный механический. Поставляется в комплекте с огневым предохранителем и фильтром. Может устанавливаться на вертикальные и горизонтальные конструкции.
  • КДЗТ (закрытого типа) – дыхательный клапан для емкости, который может выполняться как со встроенной огнезащитой (преградителем), так и без нее.
  • КДМ – механический, имеет огнезащиту, используется в парках со светлыми нефтепродуктами.
  • НДКМ – непримерзающий механический. Эффективное оборудование резервуаров для нефти и нефтепродуктов, эксплуатируемых круглогодично. Комплектуется огнепредохранителем, обеспечивает нормальную работу арматуры при низкой температуре окружения.
  • АК/АКС – аварийные дыхательные клапаны, обеспечивающие интенсивный сброс газовой взвеси при быстром нагнетании давления (увеличении температуры нефтепродукта).
  • КПГ – гидравлический.

КПГ

Гидравлические предохранительные устройства – второй уровень дыхательной арматуры резервуара. Они используются с механическими СМДК или КДМ, устанавливаются строго горизонтально. Принцип работы КПГ:

  • В устройстве присутствует жидкость с низкой температурой замерзания и минимальной способностью к испарению.
  • При нагнетании давления внутри емкости жидкость КПГ вытесняется, подталкивая гидрозатвор.
  • Затвор открывается, обеспечивая отток газовой взвеси.

В качестве рабочей жидкости используется глицериновый раствор на воде или соляровое масло. В некоторых случаях КПГ позволяет избежать аварийной ситуации даже при выходе из строя дыхательного клапана. Ставится только на вертикальных конструкциях. Обязательно комплектуется огнезащитой (предохранителем).

Вентиляционный патрубок вместо клапана

Альтернативой дыхательной арматуре может стать вентиляционный патрубок. Приспособление имеет вид короткой трубы, оснащенной коническим «колпаком», который выполняет работу козырька. Функции вентиляционного патрубка:

  • газово-воздушное сообщение (вентиляция емкости);
  • защита содержимого цистерны от попадания осадков (козырек);
  • огнезащита (если комплектуется огневым предохранителем).

Вентиляционный патрубок является популярным решением при эксплуатации:

  • сосудов с понтонами (ставится на крышу для выдувания газовой взвеси из пространства над понтоном и снижения концентрации углеводородов в парах испарений для профилактики взрыва);
  • резервуаров с плавающей крышей.

В остальных случаях вентиляционный патрубок используется только на резервуарах вертикального размещения, а его монтаж целесообразен при выполнении 2 условий.

Первое: емкость применяется для хранения нефтепродуктов высокой вязкости. Второе: вещество должно иметь крайне низкий процент испаряемости.

Если содержимое цистерны имеет температуру вспышки меньше 120 градусов, патрубок оснащается огневым предохранителем.

Источник: https://snmash.ru/articles/205-dykhatel-naya-armatura.html

Отравление азотом: интоксикация организма, симптомы и первая помощь

Азотное дыхание

Опасен ли азот для человека или отравление азотом – это только миф, ведь до 80% этого вещества находится в атмосферном воздухе и человек вдыхает его в смеси с другими газами.

При попадании его в легкие с воздушными массами он не оказывает никакого влияния на состояние человека.

Но при увеличении концентрации в организме наступает отравление, последствия которого опасны и не всегда предсказуемы.

Влияние азота на организм

Вещество относится к инертным газам, которое не обладает запахом, вкусом и цветом. Его содержание в организме близко к 2,5%. Благодаря азоту идет построение клеток и тканей, происходит энергетический обмен, поскольку он входит в состав аминокислот, из которых строятся белки. А так как человек – это белковая конструкция, то роль азота недооценивать нельзя.

Элемент в виде соединений входит в состав некоторых гормонов (инсулин, тироксин, адреналин), медиаторов, за счет которых происходит контакт между нервными клетками (ацетилхолин). Диоксид азота и его производные (нитроглицерин) влияют на гладкую мускулатуру, расширяя и сужая кровеносные сосуды.

Атмосферный азот не способен усваиваться организмом, его можно получить только с пищей, содержащей азотистые соединения (пептиды, аминокислоты, пурины). Азотное отравление наступает при попадании избыточного количества вещества с продуктами, содержащими нитраты, или через воздух (вдыхание паров).

На заметку: Получение высокой дозы азота чаще всего возможно на производстве, поскольку газ широко используется в промышленности. В быту случаи отравления встречаются редко.

Причины отравления азотом

Случаи отравления азотом на производстве, где он чаще всего используется в виде оксидов и растворов, возможны при нарушении техники безопасности. Иногда при аварии происходит массовое отравление, если речь идет о крупном промышленном объекте. Попадание паров в дыхательные пути происходит при проведении следующих технических операций:

  • при заполнении веществом емкости или в ходе его транспортировки,
  • продувка труб и их прочистка,
  • в ходе процессов охлаждения или заморозки,
  • при сгорании фото- и кинопленок,
  • во время взрывных работ,
  • при плавке металлов,
  • в процессах синтеза минеральных удобрений,
  • при создании красителей и взрывоопасных веществ.

В области медицины и фармокологии также возможно азотное отравлениепри использовании вещества в качестве наркоза, в создании медикаментов, расширяющих сосуды. В пищевой промышленностиполучить излишние дозы нитрата натрия можно в ходе приготовления примесей к колбасам или полуфабрикатам, который придает им товарный вид.

Если в составе продукта есть пищевая добавка Е942, которая содержит азотистые соединения, от него следует отказаться, поскольку она является вредной для здоровья.

Через пищевод азот проникает в организм  при употреблении овощей и фруктов, выращенных на азотных удобрениях и отличающихся высокой концентрацией нитратов. Двигатели внутреннего сгорания и газы транспорта также служат источником отравления.

Азотное опьянение или наркотический сон наступает у дайверов на большой глубине. При утомлении действие вещества усиливается, к этому добавляется нехватка кислорода и переохлаждение. А повышенное давление водных масс проявляет в полной мере наркотическое действие вещества. В данном случае азотное отравление – глубинная болезнь дайверов.

Распознать переизбыток вещества в организме сложно, поскольку оно относится к «невидимкам» без запаха, цвета, вкуса. Сложности возникают и с предельно допустимой дозой, так как неизвестно время контакта с токсическим соединением.

Вред азота для организма человека

Механизм отравления азотом до конца не изучен. Выяснено, что он растворяется в жировых клетках и вызывает общую интоксикацию, которая продолжается до его полного выведения. Азот «налипает» на мембранах нервных клеток, вызывая проблемы в передаче нервных импульсов, что поражает ЦНС человека и оказывает влияние на умственную активность.

Картина симптомов отравления азотом следующая:

  • провалы в памяти и состояние веселья,
  • слуховые и зрительные галлюцинации,
  • развитие продолжительного кашля с выделением крови,
  • боли в области грудной клетки,
  • апатия и головные боли,
  • субфебрильный рост температуры тела,
  • синюшный оттенок кожного эпидермиса,
  • усиленное сердцебиение.

В артериях растет давление, что внешне выражается в виде опьянения. Сбивается дыхание и наблюдаются приступы удушья. Поражается ЦНС, что снижает умственную работоспособность и вызывает провалы в памяти. Все симптомы идут на фоне общего ослабления организма. Человек испытывает недомогание, у него отсутствует желание к активным действиям, двигательной активности.

Определить отравление закисью азота можно визуально. Это соединение используют наркоманы как ингаляцию, вдыхая смесь из воздушных шариков. При его распространении в организма наступает состояние эйфории, недаром газ называют «веселящим». У человека наблюдается шаткая походка, беспричинный смех, несвязная речь.

Отравление окислами азота также распознается при нарушении координации движении, потери памяти, замедленной мыслительной деятельностью. При данных симптомах следует обратиться за медицинской помощью, поскольку точный диагноз может поставить только врач.

Симптомы отравления азотом проявляются на протяжении 90 мин. Затем признаки постепенно затухают и с новой силой возобновляются через 5-6 часов.

Первая помощь при отравлении азотом

При подозрении на азотное отравление вызывается бригада скорой помощи. До ее приезда необходимо совершить следующие действия:

  1. Вынести больного на свежий воздух, чтобы восстановить кислотный баланс в плазме.
  2. Расстегнуть одежду, снять галстук, убрать ремень, устранить все сковывающие дыхание элементы гардероба.
  3. Больного размещают в горизонтальном положении. Необходимо повернуть голову набок, чтобы пострадавший не захлебнулся рвотой.
  4. При сбивчивом дыхании проводят искусственную вентиляцию легких. При нарушении сердечного ритма необходим массаж сердца.
  5. При тошноте вызывают искусственную рвоту. Для этого человек выпивает 250 мл воды с активированным углем.
  6. Улучшают кровоток, расположив ноги пострадавшего под углом в 45 градусов. Полезентеплыйчайили минеральная вода без газа.
  7. Основные этапы помощи заносят в блокнот для последующей передачи врачу.

Первая помощь помогает избежать серьезных обострений и патологических изменений в организме. Например, отека легких, при котором возможен летальный исход.

Лечение

После отравления больной должен находиться в стационаре в состоянии полного покоя. Врач ставит диагноз, определяет отравляющее вещество и степень его воздействия на организм, назначает терапию.

При отравлении закисью азота (N2O) дыхательную систему приводят в норму с помощью карбогена (смесь кислорода и углекислого газа). Благодаря ему восстанавливается кровоток и пресекается возможность развития опухолей. Внутривенно вводится раствор глюкозы для стабильной работы сердечной мышцы.

При отравлении диоксидом азота (NO2) проводится такое же лечение. Вместо глюкозы в кровоток вводится хлорид кальция. Назначается комплексная кислородная терапия.

Отравление оксидом азота (NO) ведет к его замене кислорода в гемоглобине. При его длительном вдыхании наступает удушье. Если есть доступ свежего воздуха, то соединение нестойкое, а процесс обратим. Кроме того, на воздухе он разрушается, превращаясь в диоксид азота, поэтому лечится интоксикация диоксида.

Внимание! Отказ от помощи врача или самолечение крайне опасны. Последствия бывают очень тяжелыми: отек легких, остановка сердца, онкология. При тяжелом отравлении возможна инвалидность или летальный исход.

Можно ли дышать азотом?

При работе на производстве в случае аварийных ситуаций в организм попадают большие дозы токсического соединения, что сильно влияет на состояние здоровья:

  • происходят сбои в работе сердечно-сосудистой системы,
  • возникают проблемы с ЖКТ,
  • нарушается свертываемость крови,
  • наблюдается дисфункция дыхания,
  • развиваются легочные и бронхиальные патологии.

Именно поэтому так важно соблюдать технику безопасности на работе, надевать защитные костюмы и следить за исправностью оборудования.

Профилактика

При соблюдении необходимых мер безопасности можно избежать опасного отравления. Необходимо:

  1. Длительно находиться на свежем воздухе, особенно при работе на вредных производствах.
  2. Соблюдать технику безопасности ежедневно, не пренебрегать даже незначительными на первый взгляд правилами.
  3. Не пить подозрительные жидкости, особенно на производстве.
  4. При занятии дайвингом обращать внимание на глубину погружения и свое состояние. Следить, чтобы в доступе видимости находился еще один водолаз.
  5. Не употреблять продукты с добавкой Е942 и выращенные неизвестно где овощи и фрукты, в которых могут содержаться нитраты.

Вред азота для организма человека очевиден. Отравление азотом – довольно распространенное явление, поскольку используется это соединение достаточно широко. Но при правильном поведении и соблюдении необходимых требований угрозы интоксикации можно избежать.

Источник: https://fr-dc.ru/otravlenie/chto-delat-pri-azotnom-otravlenie

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: