Атф образуется в процессе синтеза белков

Конспект по биологии

Атф образуется в процессе синтеза белков

Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Репликация ДНК

Структура молекулы ДНК, установленная Дж. Уотсоном и Ф. Криком в 1953 г., отвечала тем требованиям, которые предъявлялись к молекуле-хранительнице и передатчику наследственной информации. Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Процесс удвоения ДНК происходит полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности.

Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется.

Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией.

Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Биосинтез белка и нуклеиновых кислот

В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется кодирующей, в отличие от другой — некодирующей, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.

Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в коде которой аминокислота присоединяется к соответствующей свободной тРНК.

Трансляция — это биосинтез полипептидной цепи на молекуле иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.

Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин.

Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят.

К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.

Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон).

После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.

Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.

Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

Это конспект для 10-11 классов по теме «Биосинтез белка. Репликация ДНК»

Источник: https://uchitel.pro/%D0%B1%D0%B8%D0%BE%D1%81%D0%B8%D0%BD%D1%82%D0%B5%D0%B7-%D0%B1%D0%B5%D0%BB%D0%BA%D0%B0/

Биосинтез белка

Атф образуется в процессе синтеза белков

План:

1.  Генетический код

2.  Этапы биосинтеза белка

3.  Регуляция синтеза белка

Транскрипция трансляция

ДНК → РНК → Белки → Регуляция метаболизма

Транскрипция – это синтез молекулы РНК или это процесс переписывания нуклеотидов гена с ДНК в РНК, всегда происходит на стадии двунитевой молекулы ДНК, при этом матрицей служит одна нить, которая называется антикодирующей.

Основные характеристики процесса транскрипции

1.  РНК – копия содержит в себе весь объем информации определенного участка ДНК.

2.  РНК сохраняет способность к образованию водородных связей между комплементарными основаниями (так как урацил, присутствующий в РНК вместо тимина спаривается с аденином)

3.  Транскрипция отличается от репликации, при этом РНК-копия, после завершения ее синтеза освобождается от ДНК-матрицы, после чего происходит восстановление исходной двойной спирали ДНК.

4.  Синтезирующие молекулы РНК имеют одноцепочечную структуру, она короче ДНК и соответствует длине участка ДНК, который достаточен для кодирования одного или нескольких белков.

Особенности данного процесса

1.  В клетках эукариот – прежде чем превратится в и-РНК и попасть в цитоплазму, РНК претерпевает химические изменения.

2.  В цитоплазме на каждой и-РНК синтезируются тысячи копий. Скорость этого процесса очень высока.

Генетический код

Генетический код – это аминокислотная последовательность белков. Он был расшифрован в 1961 году учеными Миренберпом и Маттеи. Они установили:

Кодирование аминокислот осуществляется триплетами нуклеотидов (кодонами) Из 4-х азотистых оснований можно составить 64 различные комбинации, которых достаточно для кодирования 20 аминокислот.

Кодон – это последовательность трех нуклеотидов, в результате которой кодируется определенная аминокислота.

Необходимо помнить, что:

Точность синтеза полипептидной цепи достигается за счет комплементарного узнавания азотистых оснований двух компонентов:

    кодона информационной РНК антикодона транспортной РНК

Последовательность аминокислот в любом белке зависит от последовательности азотистых оснований в ДНК, содержащихся в той клетке, где синтезируется данный белок.

Заложенная в ДНК информация считывается в процесс транскрипции матричной РНК (м-РНК) и переносится в белоксинтезирующую систему на рибосомы.

Ученый Крик доказал триплетную теорию кодона, которая и объясняет способ перевода четырехбуквенного языка нуклеиновых кислот на 20-буквенный язык белковых молекул.

Кодон-антикодоновое взаимодействие – это способ узнавания триплетом (которым является м-РНК) комплементарного триплета (им является антикодон), входящего в состав соответствующей т-РНК.

Кодон и антикодон спариваются антипараллельным образом (теорий качаний Крика):

1.  Два первых основания кодонов образуют прочные пары с соответствующими азотистыми основаниями антикодона.

2.  Находящиеся в третьем положении азотистые основания кодонов образуют слабые водородные связи с антикодоном.

3.  Вывод Крика: находящиеся в третьем положении основания большинства кодонов имеют некоторую степень свободы при образовании пары с соответствующими азотистым основанием антикодона – это и есть качающиеся основания.

4.  Именно такое взаимодействие кодона с антикодоном обеспечивает включение аминокислоты в соответствующие участки полипептидной цепи синтезирующегося белка.

Этапы биосинтеза белка

1 этап – этап активации аминокислот

Компоненты:

1.  20 аминокислот

2.  20 ферментов аминоацил-т-РНК-синтетаз

3.  20 и более т-РНК, а также АТФ и ионы Мg²+

На этом этапее осуществляется АТФ-зависимые превращения аминокислот в аминоацил-т-РНК.

1 стадия – из аминокислоты и АТФ образуется аминоацил-аденилат – это активированное соединение (ангидрид), в котором карбоксильная группа аминокислоты соединена с фосфатной группой адениновой кислоты.

2 стадия – аминоацидная группа аминоацил-аденилата переносится на молекулу соответствующей т-РНК. В результате образуется аминоацил-т-РНК – это активированное соединение, участвующее в биосинтезе белка. Этот процесс активизируется аминоцаил-т-РНК-синтетазами.

Во всех случаях на 2-ой стадии активированная аминокислота присоединяется к остатку адениловой кислоты, или адениловому нуклеотиду в триплете ЦЦА (ССА) на третьем конце молекулы т-РНК (3’-Т-РНК).

Молекулы т-РНК переводят информацию, заключенную в и-РНК на язык белка.

Таким образом, генетический код расшифровывается с помощью двух адаптаров: это т-РНК и аминоцаил-т-РНК-синтетаза, в результате чего каждая аминокислота может занять место, определенное ей триплетной нуклеотидной последовательностью в и-РНК, т. е. своим кодоном.

Для дальнейшего синтеза необходимы рибосомы. Синтез белков, входящих в состав рибосомной структуры, происходит цитоплазме, самосборка – в ядрышке за счет взаимодействия молекул белков и рибосомной РНК при участии ионов Мg²+.

р-РНК выполняет роль каркасов для упорядоченного расположения рибосомных полипептидов.

Суб-частицы в рибосоме расположены несимметрично, имеют неправильную форму, и соединены друг с другом так, что между ними остается бороздка, через которую проходит молекула и-РНК в процесс синтеза полипептидной цепи, а также 2-ая бороздка, удерживающая растущую полипептидную цепь.

2 этап – Инициация полипептидной цепи

Компоненты:

1.  и-РНК, гуанозинтрифосфат (ГТФ), ионы Мg²+

2.  N-формилметионил-т-РНК

3.  Инициирующий кодон в и-РНК

4.  Рибосомные субчастицы (30S, 50S)

5.  Факторы инициации (IF 1;2;3)

У E. coli и других прокариот N-концевой аминокислотой при сборке полипептидной цепи всегда является остаток N-формилметианила.

Стадии образования инициирующего комплекса

1 стадия

A)  В результате взаимодействия 30S субъединицы (субчастицы) и фактора инициации образуется структура, в которой белок препятствует ее ассоциации с 50S субчастицей.

B)  Присоединение к 30S субчастице и-РНК достигается с помощью инициирующего сигнала, представляющего собой богатую пуриновыми основаниями последовательность, центр которой находится на расстоянии 10 нуклеотидов от 5’-конца инициирующего кодона и-РНК.

C)  Первый транслируемый кодон расположен на расстоянии 25 нуклеотидов от 5’ конца.

D)  Инициирующий сигнал, представленный коротким участком и-РНК, в результате взаимодействия с комплементарной последовательностью нуклеотидов, расположенных с 3-го конца 30S субчастицы, способствует фиксированию и-РНК в нужном для инициации положении.

E)  Это взаимодействие обеспечивает правильное положение инициирующего кодона на 30S субчастице.

2 стадия

A)  К комплексу, состоящему из 30S субчастицы, фактора инициации и и-РНК, присоединяются ранее связавшиеся с N-формилметионилом т-РНК, второй фактор инициации и гуанозин-трифосфат (ГТФ).

B)  Возникновение функционально активной 70S рибосомы а результате присоединения 50S-рибосомной субчастицы к ранее образовавшейся комплексной структуре.

3 стадия – приготовление инициирующего комплекса к продолжению процесса трансляции.

3 этап – Элонгация

На этой стадии происходит синтез полипептидной цепи.

Компоненты:

1.  Инициирующий комплекс – 70S рибосома.

2.  Набор аминоацил-т-РНК

3.  Фактор элонгации, цианозинтрифосфат (ГТФ)

4.  Пептидилтрансфераза, ионы Мg²+

Элонгация – это циклический процесс.

Стадии элонгации

1 стадия – образование аминоацил-т-РНК, которая является комплементарным кодон-антикодоновым взаимодействием, а также специфической связью между участками молекул т-РНК и р-РНК.

2 стадия – подготовка для вступления остатков аминокислот в реакцию образования пептидной связи.

3 стадия (транслокация) – это перемещение рибосомы вдоль и-РНК на один кодон. На образование однопептидной связи затрачивается энергия гидролиза 2-х молекул ГТФ.

A)  Свободная т-РНК отделяется и уходит в цитоплазму.

B)  В дальнейшем аминоацильный участок вновь подготовлен для связывания очередной аминоацил-т-РНК, антикодон который комплементарен следующему кодону и-РНК – начинается новый цикл элонгации.

4 этап – Терминация.

Компоненты:

АТФ Терминирующий кодон и-РНК Факторы освобождения полипептида

1)  Рост полипептидной цепи продолжается, пока один из 3-х терминирующих кодонов (УАА, УГА, УАГ) не поступит в рибосому. В этом случае кодон-антикодо-нового взаимодействия не происходит.

2)  К терминирующему кодону присоединяется ответственный за терминацию фактор, в результате прекращается дальнейший рост белковой цепи.

3)  Синтезируемый белок, и-РНК и т-РНК определяются от рибосомы.

4)  И0РНК распадается до свободных рибонуклеидов, а т-РНК и рибосомы, распавшись на две субъединицы, участвуют в новых циклах трансляции.

5 этап – Процессинг

Компоненты:

1.  Специфические ферменты

2.  Кофакторы

Образующиеся полипептидные цепи формируют более сложные белки или управляют процессами метаболизма в качестве ферментов.

На одной молекуле и-РНК работает несколько и более (до 100) рибосом. Они образуют полисому, и на каждой рибосоме строится своя полипептидная цепь (в биосинтезе гемоглобина участвуют полсомы из 5-6 рибосом).

Отличие биосинтеза белка

1.  У прокариот – транскрипция и трансляция связаны между собой и синтез белка начинается сразу же на продолжающей синтезироваться молекуле и-РНК.

2.  У эукариот – сначала на ДНК синтезируется и-РНК, затем она созревает и только зрелая участвует в трансляции.

Регуляция синтеза белка

В процессе эволюции был создан механизм регуляции действия генов. Геном каждой клетки приобрел характер комплекса, состоящего из:

    Структурных генов, которые кодируют синтез белковых молекул (т-РНК и и-РНК); и Генов-регуляторов, которые обеспечивают упорядоченность в действии структурных генов.

Регуляция экспрессии (выражения) генов осуществляется на нескольких уровнях:

Генный – обусловлен изменением количества и локализации генов, контролирующих тот или иной признак. Транскрипционный – отвечает за то, какие и когда включать гены для наработки и-РНК. Трансляционный – обеспечивает отбор и-РНК, транслирующихся на рибосомах. Функциональный – связан с регуляцией активности ферментов.

Источник: https://veterinarua.ru/lektsii/443-biosintez-belka.html

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: