Археи это прокариот

Содержание
  1. Архейская эра
  2. Эоархей
  3. Палеоархей
  4. Мезоархей
  5. Неоархей
  6. Флора и фауна архейской эры
  7. Археи
  8. Климат Архея
  9. Гидросфера и атмосфера архейской эры
  10. Полезные ископаемые Архея
  11. Архейская эра (Архей) — от 4,0 до 2,5 млрд. лет назад
  12. Гидросфера и атмосфера: климат
  13. Флора и фауна
  14. Эукариоты и прокариоты: краткая сравнительная характеристика, таблица сходств и различий клеток
  15. Признаки прокариотической клетки
  16. Бактерии
  17. Строение эукариотов
  18. Сравнение прокариот и эукариот
  19. Вывод
  20. Конспект
  21. Надцарство ПРОКАРИОТЫ
  22. Царство БАКТЕРИИ
  23. Жизнедеятельность бактерий
  24.  Роль и значение бактерий
  25. Цианобактерии
  26. Микоплазмы
  27. Архебактерии – это что такое?
  28. Исторический ракурс
  29. Классификация
  30. Для чего нужны и какие бывают
  31. Экологические особенности
  32. Строение
  33. Что общего с другими микроорганизмами
  34. Сравнительная характеристика архе- и оксифитобактерий
  35. Методы получения энергии у прокариот
  36. Типы питания и метаболические реакции у архебактерий
  37. В заключение

Архейская эра

Археи это прокариот

Архейская эра – это первая ступень в развитии жизни на земле, захватывающая временной интервал в 1,5 млрд лет. Она берет свое начало 4 млрд лет назад.

В период архейской эры начинает зарождаться флора и фауна планеты, отсюда берет начало история динозавров, млекопитающих и человека. Появляются первые залежи естественных богатств природы. Не было горных возвышенностей и мирового океана, кислорода не хватало.

Атмосфера была смешана с гидросферой в единое целое – это препятствовало солнечным лучам попадать на землю.

Архейская эра в переводе с древнегреческого означает «древняя». Эта эра делится на 4 периода – эоархей, палеоархей, мезоархей и неоархей.

Продолжительность периодаПериоды архейской эры
4 – 3,6 млрд. л.н.ЭоархейАрхейская эра
3,6 – 3,2 млрд. л.н.Палеоархей
3,2 – 2,8 млрд. л.н.Мезоархей
2,8 – 2,5 млрд л.н.Неоархей

Эоархей

Первый период архейской эры длился приблизительно 400 млн лет. Данный период характеризуется усиленными метеоритными дождями, формированием вулканических кратеров и земной коры.

Начинается активное формирование гидросферы, появляются изолированные друг от друга соленые водоемы с горячей водой. В атмосфере преобладает углекислый газ, температура воздуха доходит до 120 °С.

Появляются первые живые организмы – цианобактерии, которые начинают производить кислород при помощи фотосинтеза. Происходит образование Ваальбары – основного земного материка.

Палеоархей

Следующий период эры Архея захватывает промежуток времени в 200 млн лет. Магнитное поле Земли усиливается за счет повышения твердости земного ядра. Это благоприятно сказывается на условиях жизни и развития простейших микроорганизмов. Сутки длятся около 15 часов.

Происходит образование мирового океана. Изменения подводных хребтов приводит к медленному повышению объема воды и понижению количества углекислого газа в атмосфере. Продолжается формирование первого земного континента. Горных массивов еще не существует.

Вместо них над землей возвышаются действующие вулканы.

Мезоархей

Третий период архейской эры продолжался 400 млн лет. В это время происходит раскол основного континента на 2 части. В результате резкого охлаждения планеты, в котором виноваты постоянные вулканические процессы, формируется Понгольское ледниковое образование. В этот период численность цианобактерий начинает активно расти.

Развиваются хемолитотрофные организмы, не нуждающиеся в кислороде и солнечных лучах. Ваальбар полностью сформирован. Размер его приблизительно равен размеру современного Мадагаскара. Начинается образование континента Ур. Из вулканов медленно начинают формироваться крупные острова. В атмосфере, как и прежде, преобладает углекислый газ.

Температура воздуха остается высокой.

Неоархей

Последний период архейской эры закончился 2,5 млрд лет назад. На данном этапе завершается формирование земной коры, увеличивается уровень кислорода в атмосфере. Материк Ур становится основой Кенорленда. Большую часть планеты занимают вулканы. Их активная деятельность приводит к повышенному образованию полезных ископаемых.

Золото, серебро, граниты, диориты и другие, не менее важные природные богатства, были сформированы в период неоархея. В последние столетия архейской эры появляются первые многоклеточные организмы, которые в дальнейшем разделились на земных и морских обитателей.

У бактерий начинается развитие полового процесса размножения. Гаплоидные микроорганизмы имеют один хромосомный набор. Они постоянно адаптируются к изменениям в среде обитания, но при этом другие свойства у них не появляются. Половой процесс позволил происходить приспособлению к жизни с изменениями в наборе хромосом.

Это дало возможность для дальнейшей эволюции живых организмов.

Флора и фауна архейской эры

Растительный мир данной эры не может похвастаться разнообразием. Единственным видом растений являются одноклеточные нитчатые водоросли – сфероморфид – ареал обитания бактерий.

Когда эти водоросли формируются в колонии, их можно увидеть без специальных приборов. Они могут отправиться в свободное плавание или прикрепиться к поверхности чего-либо.

В дальнейшем водоросли сформируют новую форму жизни – лишайники.

Во время архейской эры появились первые прокариоты – одноклеточные организмы, не имеющие ядра. С помощью фотосинтеза прокариоты производят кислород и создают благоприятные условия для появления новых форм жизни. Делятся прокариоты на два домена – бактерии и археи.

Археи

В настоящее время установлено, что археи имеют особенности, отличающие их от других живых организмов. Поэтому классификация, объединяющая их с бактериями в одну группу, считается устаревшей. Внешне археи схожи с бактериями, но некоторые имеют необычные формы.

Эти организмы могут поглощать как солнечный свет, так и углерод. Существовать могут в самых непригодных для жизни условиях. Один из видов архей является пищей для морских обитателей. Несколько видов было обнаружено в кишечнике человека. Они принимают участие в процессах пищеварения.

Другие виды используют для очистки сточных рвов и канав.

Существует неподтвержденная фактами теория, что во время архейской эры произошло зарождение и развитие эукариотов – микроорганизмов царства грибов, схожих с дрожжевыми грибами.

О том, что жизнь на земле зародилась в период архейской эры, свидетельствуют найденные окаменелые стромалиты – отходы жизнедеятельности цианобактерий. Первые строматолиты были обнаружены в Канаде, Сибири, Австралии и Африке.

Учеными доказано, что именно бактерии оказали огромное влияние на образование кристаллов арагонита, который содержится в раковинах моллюсков и входит в состав кораллов. Благодаря цианобактериям возникли залежи карбонатных и кремневых образований. Колонии древних бактерий похожи на плесень.

Располагались они и в области вулканов, и на дне озер, и в прибрежных районах.

Климат Архея

Ученым пока не удалось ничего узнать о климатических поясах данного периода. О существовании зон разного климата в архейской эре позволяют судить древние ледниковые отложения – тиллиты. Остатки оледенений в наши дни найдены в Америке, Африке, Сибири.

Их истинные размеры определить пока не представляется возможным. Скорее всего, ледниковые отложения покрывали только горные вершины, ведь обширные материки во времена архейской эры еще не были сформированы.

На существование теплого климата в некоторых зонах планеты указывает развитие флоры в океанах.

Гидросфера и атмосфера архейской эры

В ранний период воды на земле было немного. Температура воды в период архейской эры достигала 90°С. Это свидетельствует о насыщенности атмосферы углекислым газом.

Азота в ней было очень мало, кислорода на ранних этапах почти не было, остальные газы быстро разрушаются под воздействием солнечных лучей. Температура атмосферы доходит до 120 градусов.

Если бы в атмосфере преобладал азот, то и температура была бы не ниже 140 градусов.

В поздний период, после формирования мирового океана, уровень углекислого газа стал заметно снижаться. Температура воды и воздуха так же понизилась. А количество кислорода повысилось. Таким образом, планета постепенно становилась пригодной для жизни различных организмов.

Полезные ископаемые Архея

Именно в архейскую эру происходит наибольшее формирование полезных ископаемых. Этому способствует активная деятельность вулканов.

Колоссальные месторождения железных, золотых, урановых и марганцевых руд, алюминия, свинца и цинка, медных, никелевых и кобальтовых руд были заложены этой эпохой жизни земли.

На территории Российской Федерации архейские месторождения найдены на Урале и в Сибири.

Более подробно периоды Архейской эры будут рассмотрены в следующих лекциях.

Источник: http://vse-lekcii.ru/lekcii-po-istorii/istoriya-dinozavrov/arhejskaya-era

Архейская эра (Архей) — от 4,0 до 2,5 млрд. лет назад

Археи это прокариот

Архейский эон, архей (др.-греч. ρχαος — древний) — один из четырёх эонов (отрезок времени геологической истории, в течение которого формировалась эонотема, объединяет несколько эр) истории Земли, охватывающий время от 4,0 до 2,5 млрд. лет назад. Термин «архей» предложил в 1872 году американский геолог Джеймс Дана.  Архей разделён на четыре эры (от наиболее поздней до наиболее ранней):

  • Неоархей
  • Мезоархей
  • Палеоархей
  • Эоархей

В это время на Земле ещё не было кислородной атмосферы, но появились первые анаэробные организмы. В этот же период активно формируются многие ныне существующие залежи серы, графита, железа и никеля. Архей и последующий за ним Протерозой входят во временной период Докембрий.

Гидросфера и атмосфера: климат

В самом начале архейской эры воды на Земле было мало, вместо единого океана существовали лишь разрозненные мелководные бассейны. Температура воды достигала 70-90° C, что могло наблюдаться лишь в случае существования у Земли того времени плотной углекислотной атмосферы. Ведь из всех возможных газов только СО2 мог создать повышенное давление атмосферы (для архея — 8-10 бар).

Азота в атмосфере раннего архея было очень мало (10-15% от объёма всей архейской атмосферы), кислород вообще практически отсутствовал, а такие газы, как метан, неустойчивы и быстро разлагаются под влиянием жёсткого излучения Солнца (особенно в присутствии гидроксил- иона, также при этом возникающего во влажной атмосфере).

Температура архейской атмосферы при парниковом эффекте достигала почти 120°С. Если бы при том же давлении атмосфера в архее состояла, например, только из азота, то приземные температуры были бы ещё выше и достигали 100°С, а температура при парниковом эффекте превышала бы 140° С.

Примерно 3,4 млрд. лет назад количество воды на Земле значительно увеличилось и возник Мировой океан, перекрывший гребни срединно-океанических хребтов.

В результате заметно усилилась гидратация базальтовой океанической коры, а скорость роста парциального давления СО2 в позднеархейской атмосфере несколько снизилась.

Наиболее радикальное падение давления СО2 произошло только на рубеже архея и протерозоя после выделения земного ядра и связанного с ним резкого уменьшения тектонической активности Земли.

Благодаря этому в раннем протерозое столь же резко сократились выплавки океанических базальтов. Базальтовый слой океанической коры стал заметно более тонким, чем он был в архее, и под ним впервые сформировался серпентинитовый слой — главный и постоянно обновляемый резервуар связанной воды на Земле.

Флора и фауна

В архейских отложениях отсутствует скелетная фауна, которая служит основой для построения стратиграфической шкалы фанерозоя, тем не менее разнообразных следов органической жизни здесь довольно много.

К ним относятся продукты жизнедеятельности сине-зелёных водорослей — строматолиты, представляющие собой кораллоподобные осадочные образования (карбонатные, реже кремниевые), и продукты жизнедеятельности бактерий — онколиты.

Первые достоверные строматолиты были обнаружены лишь на рубеже 3,2 млрд. лет назад в Канаде, Австралии, Африке, на Урале и в Сибири. Хотя имеются свидетельства обнаружения остатков первых прокариот и строматолитов в отложениях возрастом 3,8-3,5 млрд. лет, в Австралии и Южной Африке.

Также в кремнистых породах раннего архея найдены своеобразные нитчатые водоросли, имеющие хорошую сохранность, при которой можно наблюдать детали клеточного строения организма. На многих стратиграфических уровнях встречаются мельчайшие округлые тельца (размером до 50 m) водорослевого происхождения, принимавшиеся ранее за споры. Они известны под названием «акритарх», или «сфероморфид».

Животный мир архея значительно беднее, чем растительный.

Отдельные указания на нахождение в породах архея остатков животных относятся к объектам, которые, по- видимому, имеют неорганическое происхождение (Aticocania Walcott, Tefemar kites Dons, Eozoon Dawson, Brooksalla Bassler) или являются продуктами выщелачивания строматолитов (Carelozoon Metzger). Многие окаменелости архея до конца не расшифрованы (Udokania Leites) или не имеют точной привязки (Xenusion querswalde Pompecki).

Таким образом, в архейском зоне достоверно найдены прокариоты двух царств: бактерии, преимущественно хемосинтезирующие, анаэробные и фотосинтезирующие цианобионты, продуцирующие кислород. Не исключено, что в архее появились и первые эукариоты из царства грибов, морфологически сходные с дрожжевыми грибами.

Древнейшие бактериальные биоценозы, т.е. сообщества живых организмов, включавшие только продуцентов и деструкторов, были похожи на плёнки плесени (т.н. бактериальные маты), располагавшиеся на дне водоёмов или в их прибрежной зоне. Оазисами жизни часто служили и вулканические области, где на поверхность из литосферы поступали водород, сера и сероводород — основные доноры электронов.

На протяжении почти всей архейской эры живые организмы были одноклеточными, сильно зависимыми от природных факторов существами. И лишь на рубеже архея и протерозоя произошло два крупных эволюционных события: появились половой процесс и многоклеточность.

Гаплоидные организмы (бактерии и сине-зелёные водоросли) имеют один набор хромосом. Каждая новая мутация сразу же проявляется у них в фенотипе. Если мутация полезна, она сохраняется в процессе естественного отбора, если вредна, устраняется.

Гаплоидные организмы непрерывно приспосабливаются к среде, но принципиально новых признаков и свойств у них не возникает.

Половой процесс резко повышает возможность приспособления к условиям среды, вследствие создания бесчисленных комбинаций в хромосомах.

Диплоидность, возникшая одновременно с оформленным ядром, позволяет сохранить мутации и использовать их как резерв наследственной изменчивости для дальнейших эволюционных преобразований.

Источник: https://dinoinfo.ru/arhejskaja-jera-arhej-ot-4-0-do-2-5-mlrd-let-nazad

Эукариоты и прокариоты: краткая сравнительная характеристика, таблица сходств и различий клеток

Археи это прокариот

На Земле существует всего два типа организмов: эукариоты и прокариоты. Они сильно различаются по своему строению, происхождению и эволюционному развитию, что будет подробно рассмотрено далее….

Признаки прокариотической клетки

Прокариоты по-другому называют доядерными. У прокариотической клетки нет ядра и других органоидов, имеющих мембранную оболочку (митохондрий, эндоплазматического ретикулума, комплекса Гольджи).

Также характерными чертами для них являются следующее:

  1. ДНК без оболочки и не образует связей с белками. Информация передаётся и считывается непрерывно.
  2. Все прокариоты – гаплоидные организмы.
  3. Ферменты располагаются в свободном состоянии (диффузно).
  4. Обладают способностью к спорообразованию при неблагоприятных условиях.
  5. Наличие плазмид – мелких внехромосомных молекул ДНК. Их функция передача генетической информации, повышение устойчивости ко многим агрессивным факторам.
  6. Наличие жгутиков и пилей – внешних белковых образований необходимых для передвижения.
  7. Газовые вакуоли – полости. За счёт них организм способен передвигаться в толще воды.
  8. Клеточная стенка у прокариот (именно бактерий) состоит из муреина.
  9. Основными способами получения энергии у прокариот являются хемо- и фотосинтез.

К ним относятся бактерии и археи. Примеры прокариотов: спирохеты, протеобактерии, цианобактерии, кренархеоты.

Внимание! Несмотря на то, что у прокариот отсутствует ядро, они имеют его эквивалент – нуклеоид (кольцевую молекулу ДНК, лишённую оболочек), и свободные ДНК в виде плазмид. Строение прокариотической клетки

Бактерии

Представители этого царства являются одними из самых древних жителей Земли и обладают высокой выживаемостью в экстремальных условия.

Различают грамположительные и грамотрицательные бактерии. Их главное отличие заключается в строении мембраны клеток. Грамположительные имеют более толстую оболочку, до 80% состоит из муреиновой основы, а также полисахаридов и полипептидов.

При окрашивании по Граму они дают фиолетовый цвет. Большинство этих бактерий являются возбудителями заболеваний. Грамотрицательные же имеют более тонкую стенку, которая отделена от мембраны периплазматическим пространством.

Однако такая оболочка обладает повышенной прочностью и гораздо сильнее противостоит воздействию антител.

Бактерии в природе играют очень большую роль:

  1. Цианобактерии (сине-зелёные водоросли) помогают поддерживать необходимый уровень кислорода в атмосфере. Они образуют больше половины всего О2 на Земле.
  2. Способствуют разложению органических останков, тем самым принимая участие в круговороте всех веществ, участвуют в образовании почвы.
  3. Фиксаторы азота на корнях бобовых.
  4. Очищают воды от отходов, к примеру, металлургической промышленности.
  5. Являются частью микрофлоры живых организмов, помогая максимально усваивать питательные вещества.
  6. Используются в пищевой промышленности для сбраживания Так получают сыры, творог, алкоголь, тесто.

Внимание! Помимо положительного значения бактерии играют и отрицательную роль. Многие из них вызывают смертельно опасные заболевания, такие как холера, брюшной тиф, сифилис, туберкулёз. Бактерии

Строение эукариотов

Эукариоты представляют собой надцарство организмов, в клетках которых содержится ядро. Кроме архей и бактерий все живые существа на Земле являются эукариотами (к примеру, растения, простейшие, животные).

Клетки могут сильно отличаться по своей форме, строению, размерам и выполняемым функциям.

Несмотря на это они сходны по основам жизнедеятельности, метаболизму, росту, развитию, способности к раздражению и изменчивости.

Эукариотические клетки могут превышать в размерах прокариотические в сотни и тысячи раз. Они включают в себя ядро и цитоплазму с многочисленными мембранными и немембранными органоидами. К мембранным относятся: эндоплазматический ретикулум, лизосомы, комплекс Гольджи, митохондрии, пластиды. Немембранные: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Строение эукариотов

Проведем сравнение клеток эукариотов разных царств.

К надцарству эукариот относятся царства:

  • простейшие. Гетеротрофы, некоторые способны к фотосинтезу (водоросли). Размножаются бесполым, половым путём и простым способом на две части. У большинства клеточная стенка отсутствует,
  • растения. Являются продуцентами, основной способ получения энергии – фотосинтез. Большая часть растений неподвижны, размножаются бесполым, половым и вегетативным путём. Клеточная стенка состоит из целлюлозы,
  • грибы. Многоклеточные. Различают низшие и высшие. Являются гетеротрофными организмами, не могут самостоятельно передвигаться. Размножаются бесполым, половым и вегетативным путём. Запасают гликоген и имеют прочную клеточную стенку из хитина,
  • животные. Различают 10 типов: губки, черви, членистоногие, иглокожие, хордовые и другие. Являются гетеротрофными организмами. Способны к самостоятельному передвижению. Основное запасающее вещество – гликоген. Оболочка клеток состоит из хитина, также как у грибов. Главный способ размножения – половой.

Таблица: Сравнительная характеристика растительной и животной клетки

СтроениеКлетка растенияКлетка животного
Клеточная стенкаЦеллюлозаСостоит из гликокаликса тонкого слоя белков, углеводов и липидов.
Местоположение ядраРасположено ближе к стенкеРасположено в центральной части
Клеточный центрИсключительно у низших водорослейПрисутствует
ВакуолиСодержат клеточный сокСократительные и пищеварительные.
Запасное веществоКрахмалГликоген
ПластидыТри вида: хлоропласты, хромопласты, лейкопластыОтсутствуют
ПитаниеАвтотрофноеГетеротрофное

Сравнение прокариот и эукариот

Особенности строения прокариотической и эукариотической клеток значительны, однако одно из главных различий касается хранения генетического материала и способа получения энергии.

Прокариоты и эукариоты фотосинтезируют по-разному. У прокариот этот процесс проходит на выростах мембраны (хроматофорах), уложенных в отдельные стопки.

Бактерии не имеют фторой фотосистемы, поэтому не выделяют кислород, в отличие от сине-зелёных водорослей, которые образуют его при фотолизе. Источниками водорода у прокариот служат сероводород, Н2, разные органические вещества и вода.

Основными пигментами являются бактериохлорофилл (у бактерий), хлорофилл и фикобилины (у цианобактерий).

К фотосинтезу из всех эукариот способны только растения. У них имеются специальные образования – хлоропласты, содержащие мембраны, уложенные в граны или ламеллы.

Наличие фотосистемы II позволяет выделять кислород в атмосферу при процессе фотолиза воды. Источником молекул водорода служит только вода.

Главным пигментов является хлорофилл, а фикобилины присутствуют лишь у красных водорослей.

Основные различия и характерные признаки прокариотов и эукариотов представлены в таблице ниже.

Таблица: Сходства и различия прокариотов и эукариотов

СравнениеПрокариотыЭукариоты
Время появленияБолее 3,5 млрд. летОколо 1,2 млрд. лет
Размеры клетокДо 10 мкмОт 10 до 100 мкм
КапсулаЕсть. Выполняет защитную функцию. Связана с клеточной стенкойОтсутствует
Плазматическая мембранаЕстьЕсть
Клеточная стенкаСостоит из пектина или муреинаЕсть, кроме животных
ХромосомыВместо них кольцевая ДНК. Трансляция и транскрипция проходят в цитоплазме.Линейные молекулы ДНК. Трансляция проходит в цитоплазме, а транскрипция в ядре.
РибосомыМелкие 70S-типа. Расположены в цитоплазме.Крупные 80S-типа, могут прикрепляться к эндоплазматической сети, находиться в пластидах и митохондриях.
Органоид с мембранной оболочкойОтсутствуют. Есть выросты мембраны мезосомыЕсть: митохондрии, комплекс Гольджи, клеточный центр, ЭПС
ЦитоплазмаЕстьЕсть
ЛизосомыОтсутствуютЕсть
ВакуолиГазовые (аэросомы)Есть
ХлоропластыОтсутствуют. Фотосинтез проходит в бактериохлорофиллахПрисутствуют только у растений
ПлазмидыЕстьОтсутствуют
ЯдроОтсутствуетЕсть
Микрофиламенты и микротрубочки.ОтсутствуютЕсть
Способы деленияПеретяжка, почкование, коньюгацияМитоз, мейоз
Взаимодействие или контактыОтсутствуютПлазмодесмы, десмосомы или септы
Типы питания клетокФотоавтотрофный, фотогетеротрофный, хемоавтотрофный, хемогетеротрофныйФототрофный (у растений) эндоцитоз и фагоцитоз (у остальных)

Отличия прокариот и эукариот

Сходство и различия прокариотических и эукариотических клеток

Вывод

Сравнение прокариотического и эукариотического организма достаточно трудоёмкий процесс, требующий рассмотрения множества нюансов.

Они имеют между собой много общего в плане строения, протекающих процессов и свойств всего живого. Различия же кроются в выполняемых функциях, способах питания и внутренней организации.

Тот, кто интересуется данной темой, может воспользоваться данной информацией.

Источник: https://tvercult.ru/nauka/kto-takie-eukariotyi-i-prokariotyi-sravnitelnaya-harakteristika-kletok-raznyih-tsarstv

Конспект

Археи это прокариот

Ключевые слова конспекта: надцарство Прокариоты, царство Археи (архебактерии), царство Бактерии (эубактерии), цианобактерии, жизнедеятельность бактерий, роль и значение бактерий, антибиотики, микоплазмы.

Надцарство ПРОКАРИОТЫ

В надцарство Прокариоты объединяются одноклеточные организмы с прокариотическим типом строения клетки. Это древнейшие известные организмы; они появились на Земле около 3,5 млрд лет назад.

В настоящее время прокариоты очень многочисленны, они населяют все среды обитания (воздух, воду, почву и другие организмы). В атмосфере они присутствуют в каплях воды и частичках пыли; встречаются на высоте до 8 км.

Прокариоты населяют все водоёмы Земли: горячие кислотные источники (с температурой выше 90 °С), океанические разломы (при температуре выше 360 °С). Они найдены во льдах Антарктики, взятых с глубины более 430 м. Огромное число бактерий обитает в почве, они играют важную роль в круговороте различных химических элементов.

Обитая в других организмах, они могут быть возбудителями различных заболеваний (бактериальные инфекции) или помогать организму хозяина переваривать пищу (жвачные животные и термиты).

Некоторые прокариоты — автотрофы, осуществляющие фото- или хемосинтез, другие — гетеротрофы.

Прокариот принято делить на два царства: царство Эубактерии (Бактерии) и царство Архебактерии (Археи).

Царство БАКТЕРИИ

Эубактерии — большая группа организмов, к которой относятся бактерии, цианобактерии и микоплазмы. В школьной литературе принято называть эубактерий просто бактериями. На сегодня описано около 10 000 видов и предполагается, что их существует свыше миллиона. Обычно имеют небольшие размеры, прокариотический тип организации клетки.

По форме клетки бактерии делятся на кокки — более или менее сферические, бациллы — палочки или цилиндры с закруглёнными концами, спириллы — спиралевидные; вибрионы — короткие палочки, изогнутые в виде запятой.

Бактерии относятся к одноклеточным организмам, но иногда после деления могут оставаться вместе, скрепляясь при помощи клеточных стенок или слизистых капсул. Кокки могут образовывать пары (диплококки), цепочки (стрептококки) или грозди (стафилококки); бациллы — нити.

Цианобактерии могут образовывать нити длиной до 1 м, иногда собранные в округлые колонии.

Подавляющее большинство эубактерий относятся к гетеротрофам, которые делятся на три группы по образу жизни:

  • сапротрофы — питаются мёртвыми организмами и их остатками (наряду с грибами участвуют в минерализации органических остатков);
  • паразиты — питаются за счёт живых организмов, причиняя им вред (болезнетворные бактерии);
  • эндосимбионты — живут в других организмах и участвуют в их нормальном обмене веществ.

Жизнедеятельность бактерий

 Питание:

  • автотрофное (синтез органических веществ из неорганических) — фотосинтез, хемосинтез
  • гетеротрофное (использование готовых органических веществ: сапрофиты, симбионты, паразиты)

 Дыхание:

  • аэробное (используют для дыхания кислород)
  • анаэробное (живут в отсутствие кислорода)

 Движение:

  • с помощью жгутиков
  • с помощью волнообразных сокращений.

 Размножение:

  • бесполое (бинарным делением клетки). Иногда разделившиеся клетки не расходятся — образуются цепочки. Бактерии способны очень быстро размножаться.
  • половое (конъюгация, обмен генетической информацией).

Типы полового процесса у бактерий:

  1. При трансформации бактерия поглощает из окружающей среды свободную ДНК, попавшую туда при разрушении других бактерий (или, в условиях эксперимента, введённую исследователем).
  2. При трансдукции фрагменты ДНК могут также переноситься от бактерии к бактерии вирусами (бактериофагами).
  3. При конъюгации бактерии соединяются друг с другом временными трубчатыми выростами (копуляционными фимбриями), через которые ДНК переходит из «мужской» клетки в «женскую».

При неблагоприятных условиях бактеpии образуют споры, имеющие плотные капсулы. Эти споры выдерживают кипячение, замораживание, высушивание. Они способны находиться в неактивном состоянии в течение многих лет.

Почти все бактеpии содержат мелкие добавочные хромосомы — плазмиды, которые могут встраиваться в нуклеоид. Зачастую плазмиды содержат гены, обусловливающие устойчивость к антибиотикам. Обмен плазмидами (в результате конъюгации) может происходить между различными видами и даже родами бактерий.

 Роль и значение бактерий

Положительная роль:

  • участие в круговороте веществ в природе
  • участие в почвообразовании
  • образование полезных ископаемых
  • симбиотическое взаимодействие с грибами и растениями
  • биологическая очистка водоёмов
  • получение кисломолочных продуктов

Отрицательная роль:

  • порча пищевых продуктов
  • разрушение построек и механизмов
  • цветение воды
  • заболевания растений, животных и человека (холера, чума, дифтерия, туберкулёз, сифилис)

Антибиотики — химические вещества, выделяемые бактериями и грибами для угнетения других микроорганизмов.
Открытие антибиотиков (пенициллина) в 1929 г. А.

Флемингом обусловило значительный прогресс в лечении бактериальных инфекций (пенициллин начали применять в медицине с 1941 г.). Механизм их действия различен: часть антибиотиков (пенициллины) нарушает синтез клеточной оболочки; другие (тетрациклин, стрептомицин и др.

) нарушают синтез белка, инактивируя бактериальные рибосомы. Сульфаниламидные препараты подавляют синтез фолиевой кислоты в бактериальных клетках.

Большинство антибиотиков получают в культурах микроорганизмов, и лишь небольшое число — путём химического синтеза. На основе природных антибиотиков получено большое число синтетических (например, ампициллин, цефалексин и др.).

У бактерий достаточно быстро развивается устойчивость к определённым антибиотикам (часто она передаётся с плазмидами), поэтому постоянно разрабатываются новые, всё более мощные антибиотики. Антибиотики способствуют возникновению бактерий, лишённых клеточной стенки.

Эти бактерии менее болезнетворны, но способны длительное время сохраняться в поражённом организме. Применение антибиотиков нарушает нормальную микрофлору кожи и кишечника.

По этой причине лечение антибиотиками допустимо только по назначению врача, с соблюдением всех его рекомендаций.

Цианобактерии

Цианобактерии — фототрофные, прокариотические организмы, окрашенные в сине-зеленый цвет. Характерные черты:

  • автотрофы,
  • не имеют жгутиков,
  • могут вступать в симбиоз,
  • размножаются только бесполым путем.

Микоплазмы

Микоплазмы — мельчайшие бактерии (0,1 мкм). От остальных эубактерий отличаются отсутствием клеточной стенки и связанной с этим изменчивостью формы, малым размером генома и неподвижностью.

Микоплазмы широко распространены в природе; некоторые из них ведут сатротрофный образ жизни, другие — паразитируют в организме животных и растений.

У человека микоплазмы вызывают заболевания дыхательных путей, в том числе воспаление лёгких (пневмонию), а также воспалительные заболевания мочеполовой системы.

Микоплазмы нечувствительны к антибиотикам (например, к пенициллину), которые подавляют рост бактерий, воздействуя на их клеточную стенку.

Это конспект по теме «Прокариоты. ЦАРСТВО БАКТЕРИИ». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D0%BF%D1%80%D0%BE%D0%BA%D0%B0%D1%80%D0%B8%D0%BE%D1%82%D1%8B-%D1%86%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%BE-%D0%B1%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D0%B8/

Архебактерии – это что такое?

Археи это прокариот

Архебактерии – это одноклеточные организмы, изначально не имеющие ядра. По одной из теорий возникновения жизни считается, что первыми появились именно эти существа, а уже затем от них произошли бактерии, вирусы и другие организмы.

Исторический ракурс

Архебактерии впервые были выявлены как отдельное подцарство в 1977 году учеными К. Везе и Дж. Фоксом. Доказано, что их клеточная стенка производит оригинальные энзимы и не похожа на клеточные стенки других бактерий, которые были исследованы ранее.

Это открытие было совершено благодаря использованию сравнительного анализа 16S рРНК. При традиционном микроскопировании обнаружить характерные отличия представителей подцарства архебактерии от настоящих бактерий практически невозможно.

Предположительно они появились на планете около трех миллиардов лет назад, будучи доядерными микроорганизмами.

Классификация

Все бактерии относятся к биологическому царству прокариот. Архебактерии не являются исключением. В биосистеме рассматриваемые организмы относятся к одноименному подцарству, в пределах которого выделяют:

  • анаэробные (живущие без кислорода);
  • серовосстанавливающие микроорганизмы;
  • бактерии, метаболизирующие молекулярную серу и относящиеся к экстремальным термофилам;
  • термоацидофильные микоплазмы и экстремально галофильные бактерии.

Исследователи по-разному классифицируют данный вид организмов. Некоторые выделяют для них царство прокариот, другие же считают, что правильнее их относить к отдельному классу царства прокариот.

Для чего нужны и какие бывают

Архебактерии отличаются метаболизмом, экологическими и физиологическими особенностями. Рассмотрим некоторые разновидности представителей данного биокласса.

Наиболее известны метанообразующие архебактерии. Это такие микроорганизмы, с помощью которых на нашей планете образуется метан. Они являются облигатными анаэробами, чаще всего обнаруживаются в болотах, водоемном иле, пищеварительной системе крупного рогатого скота и других жвачных животных, очистных сооружениях, затопляемых почвах.

Помимо этого, к архебактериям относят и некоторых представителей серобактерий.

Они принимают участие в кругообороте серы, способствуют ее окислению и образованию кислоты, которая обладает разъедающими свойствами.

Данные микроорганизмы в своих клетках концентрируют химическое вещество, а потому их скопление в определенных местах играет решающую роль в процессе зарождения крупных источников серы.

Архебактерии не являются паразитными организмами, поэтому в лимитированных количествах применяются в медицине как общеукрепляющее средство. Также они способствуют утилизации органических отходов. В этом заключается значение архебактерий.

Экологические особенности

Архебактерии – это живые организмы, приспособленные к любым условиям обитания, к любому типу экологии. Среди них встречаются термофилы, которые способны существовать при температуре, превышающей 110 оС.

Бактерии, живущие в диаметрально противоположных по кислотности условиям – ацидофилы. Они «любят» кислоту и обитают при уровне рН, равном 1. Алкафилы предпочитают обитание в щелочной среде, где рН может достигать 11.

Помимо этого, среди указанного подцарства встречаются представители, которые могут:

  • существовать при ограниченных ресурсах влаги (ксерофилы);
  • размножаться в условиях пониженных положительных и отрицательных температур, до -10 оС (психрофилы);
  • обитать в соляных растворах с концентрацией соли до 30 % (галофилы);
  • выдерживать атмосферное давление до 700 атмосфер (барофилы).

Из окружающей среды они потребляют лишь простые органические вещества. Зависимость от природных условий минимальная.

Строение

Для всех представителей архебактерий характерны следующие особенности:

  • В клеточной стенке отсутствует пептидогликан. Вместо него в их состав входит псевдомуреин, не содержащий мурамовой кислоты и D-аминокислот в пептидных мостиках.
  • В мембранах представителей подцарства архебактерий содержатся бифинальные глицериновые эфиры вместо жирных кислот с глицерином.
  • В транспортной РНК тимин заменен иными основаниями. Гены, кодирующие данную РНК, имеют интроны, характерные для эукариот.
  • В геноме последовательности повторяются многократно, что эквивалентно хромосомной ДНК у эукариот.
  • По сравнению с последними у архебактерий больше белка повышенной кислотности.
  • У архебактерий в основном встречаются цилиндрические и сферические клетки. Также встречаются плоские клетки, похожие на кусочки битого стекла.

Таковы особенности строения архебактерий.

Что общего с другими микроорганизмами

Все бактерии, относящиеся к царству прокариот, подразделяются на подцарства Архебактерии и Оксифотобактерии, а также Настоящие бактерии.

Колонии некоторых настоящих бактерий можно разглядеть невооруженным глазом. По форме они могут быть самыми различными: кокками, спириллами, сарцинами и иными.

Клеточная стенка построена на основе вещества, близкого по своему составу, структуре к целлюлозе, сверху покрыта слизью. Ее содержимое отделено от стенки мембраной.

Отсутствуют пластиды и митохондрии, окруженные мембраной, которые характерны для животных и растительных организмов. Синтез белков, как и у эукариотических организмов, осуществляется с помощью рибосом.

При наступлении неблагоприятных условий большинство бактерий способно образовывать споры за счет выделения части цитоплазмы, покрываемой капсулой. Метаболизм в клетке прекращается, но бактерии продолжают жить. Они разносятся ветром, в благоприятных условиях возвращаются к активной жизнедеятельности.

В отличие от бактерий, архебактерии имеют сопоставимые по размерам рибосомы с эукариотами. При этом и те, и другие относятся к гетеротрофам.

Некоторые способны к фотосинтезу, но в отличие от растений, не за счет содержания хлорофилла, а за счет наличия так называемого бактериохлорофилла.

В процессе бактериального фотосинтеза здесь не выделяется кислород, как у растений. Представители этих двух классов часто имеют жгутики.

Сравнительная характеристика архе- и оксифитобактерий

Ко второму типу относятся, преимущественно, цианобактерии или сине-зеленые водоросли. Архебактерии и оксифитобактерии существенно различаются, несмотря на то, что оба вида относятся к гетеротрофам. У оксифитобактерий имеется хлорофилл, который отличается строением.

Помимо этого, в наличии у данного микроорганизма могут быть и фотосинтезирующие пигменты. В подцарствах архебактерии и оксифитобактерии процесс фотосинтеза протекает по-разному. При этом жгутиков у вторых не наблюдается.

У оксифитобактерий, в отличие от архебактерий, процесс фотосинтеза сопровождается выделением кислорода.

Размножение у всех прокариот осуществляется примерно одинаково – делением клетки пополам. Клетка у оксифитобактерий имеет небольшое количество целлюлозы, в основном же там находятся пектиновые вещества и полисахариды.

Методы получения энергии у прокариот

Из внешней среды могут существовать разные способы получения энергии для прокариот. Архебактерии приспосабливаются к жизни как с доступом кислорода (аэробные), так и без него.

При анаэробном дыхании происходит образование метана.

Ряд архебактерий, обитающих на морском дне, в иловых отложениях, осуществляют так называемое “сульфатное дыхание” (сульфатредукция), при котором сульфаты преобразуются в сероводород.

Для рассматриваемого подцарства живых организмов характерен хемосинтез. Под ним понимают процесс окисления не только органических, но и неорганических соединений. Так, водород из глубин нашей планеты может окисляться за счет сульфатов, образуя воду и сероводород. Сера в процессе хемосинтеза выполняет роль как окислителя, так и восстановителя.

Таким образом, архебактерии способны к осуществлению процесса хемосинтеза, при котором органические вещества образуются за счет протекания окислительно-восстановительных реакций.

Помимо этого, некоторые представители данного вида способны получать энергию через брожение. Другие находят для себя источники в цепи электронного транспорта, в котором участвуют цитохромы, хиноны, ферредоксины. В этом случае осуществляется трансмембранный перенос протонов.

Типы питания и метаболические реакции у архебактерий

Для организмов, составляющих рассматриваемое подцарство, характерны 4 типа питания:

  • хемоорганогетеротрофный;
  • фотогетеротрофный;
  • хемолитогетеротрофный;
  • хемолитоавтотрофный.

В своем большинстве метаболические реакции происходят подобно таковым у Настоящих бактерий.

В заключение

Архебактерии – это древние бактерии в дословном переводе с греческого языка. Они представляют собой микроорганизмы с доядерным строением клетки. По некоторым свойствам они отличаются от Настоящих бактерий. Наибольшие отличия наблюдаются между архебактериями и оксифотобактериями.

Основные отличия от заключаются в том, что клеточные стенки содержат псевдомуреин, в составе тРНК наблюдается другая последовательность оснований. Эти организмы приспособлены к существованию в практически любых условиях.

Для некоторых из них свойственен процесс фотосинтеза без выделения кислорода, протекающий с помощью бактериородопсина (бактериохлорофилла).

Источник: https://FB.ru/article/349347/arhebakterii---eto-chto-takoe

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: