Апоптоз гистология

Содержание
  1. Апоптоз: заказное самоубийство
  2. Ферменты-киллеры
  3. Сигнал на запуск
  4. Жить или не жить?
  5. Интерпретация результата анализов ВПЧ: расшифровка цитологии и гистологии | Университетская клиника
  6. Что дает анализ на ВПЧ
  7. Цитологические (PAP-тест)
  8. Гистологическое исследование биоптата
  9. В зависимости от этого устанавливается степень дисплазии или ставится диагноз карциномы
  10. Лабораторная диагностика
  11. Современные методы диагностики ВПЧ позволяют:
  12. ссылкой:
  13. Апоптоз клеток: определение, механизм и биологическая роль
  14. Что такое апоптоз
  15. Причины апоптоза клеток
  16. Чем апоптоз отличается от некроза
  17. Биологическое значение апоптоза
  18. Молекулярные механизмы апоптоза клетки
  19. Факторы апоптоза
  20. Роль каспаз в клеточной гибели
  21. Пути активации апоптоза
  22. Апоптоз и некроз
  23. АПОПТОЗ
  24. НЕКРОЗ
  25. Клинико-морфологические формы некроза
  26. Сравнительная характеристика апоптоза и некроза

Апоптоз: заказное самоубийство

Апоптоз гистология
: 10 Дек 2013 , Вслед за Создателем , том 52, №4

Само название этого типа клеточной смерти – апоптоз, что в переводе с греческого означает «падающие листья», говорит о том, что он является такой же естественной и неотъемлемой чертой многоклеточного организма, как сезонная смена листвы для деревьев. Апоптоз запускается, когда клетка имеет серьезные повреждения, ведущие к нарушению ее функций: в результате слаженной работы специальных систем, необратимо повреждающих основные клеточные структуры, такая клетка заканчивает жизнь «самоубийством».

Все клетки многоклеточных существ несут в себе потенциальную способность к апоптозу, так же как японские самураи всю жизнь носят с собой меч. И если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими.

Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие.

Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности

Каждый день и каждый час в нашем организме погибают миллионы клеток.

Отшелушиваются ороговевшие клетки покровного эпителия, быстро изнашиваются и гибнут клетки слизистой ткани, выстилающей пищеварительный тракт, лейкоциты – белые клетки крови, находят свою смерть в борьбе с патогенами… Но как наше тело избавляется от специализированных клеток, когда в результате накопившихся внутренних повреждений они становятся неспособными выполнять свои функции? Одним из самых парадоксальных и удивительных механизмов, контролирующих жизнеспособность многоклеточного организма, является апоптоз – клеточная самоликвидация.

Регулярная, генетически запрограммированная гибель отдельных клеток необходима для нормального функционирования организма в целом.

Все клетки многоклеточных существ обладают аппаратом апоптоза, так же как японские самураи всю жизнь носят с собой меч.

Однако у этого естественного процесса есть и обратная сторона: если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими.

Нарушения в запуске апоптоза ведут к возникновению ряда серьезных заболеваний, в том числе аутоиммунных и онкологических. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие.

Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности.

Ферменты-киллеры

Итак, клетка выполнила свои функции, «постарела» и готова к самоуничтожению во благо всему организму. Кто же выполняет это «заказное» самоубийство?

Оказывается, в этом «детективе» про апоптоз имеются и свои затаившиеся киллеры. В этой роли выступают особые ферменты – каспазы, имеющиеся в каждой клетке (Salvesen, 2002; Nicholson, 1999; Lavrik et al., 2005).

Обычно каспазы присутствуют в клеточной цитоплазме в виде неактивных предшественников (прокаспаз).

Прокаспазы не проявляют никакой активности, мирно сосуществуя в клетке вместе с другими белками, однако при поступлении сигнала на самоуничтожение они превращаются в настоящие белки-убийцы.

«Смена имиджа» безобидных прокаспаз происходит так: белок расщепляется на три фрагмента, один из которых (продомен) отщепляется, а остальные соеди­няются с двумя аналогичными фрагментами другой прокаспазы. Благодаря такой структурной перестройке образуется активный гетеротетрамер каспазы, в котором аминокислоты формируют центр фермента, выполняющий каталитическую функцию (Salvesen, 2002).

Образовавшиеся активные каспазы наконец показывают свое настоящее лицо: они начинают расщеплять все белки, которые содержат остатки аминокислоты аспарагина (при условии, что рядом располагаются определенным образом остатки еще трех других аминокислот).

В результате такой «подрывной» деятельности в клетке оказываются поврежденными сотни белков.

К числу наиболее известных мишеней каспаз относятся белки цитоскелета (структурного каркаса клетки); белки, отвечающие за репарацию (восстановление) поврежденной ДНК; структурные белки оболочки клеточного ядра, а также ряд других жизненно важных белков. Все это приводит к нарушению всех процессов жизнедеятельности клетки.

В то же время каспазы активируют ряд белков, которые участвуют в выполнении программы самоликвидации. Например, белка, который разрезает ДНК на большие фрагменты, – этот процесс, после которого целостность ДНК необратимо уничтожается, является характерной чертой апоптоза.

Сигнал на запуск

Но каким же образом клетка узнает, что ей пора самоликвидироваться? Кто и как дает указания киллерам-каспазам?

Имеется два основных пути, по которым передаются апоптопические сигналы в виде клеточных регуляторов, таких как гормоны, антигены, моноклональные антитела и другие молекулы. Это митохондриальный (иливнутренний) путь, а также через особые трансмембранные белки – так называемые рецепторы смерти (DR, от англ.

death receptor). В обоих случаях для запуска апоптоза должны образоваться особые инициаторные апоптотические комплексы.

Затем происходит активация так называемых инициаторных каспаз, которые, в свою очередь, активируют эффекторные (разрушающие клеточные структуры) каспазы, о которых упоминалось выше (Nicholson, 1999).

Митохондриальный путь инициируется в результате интенсивного воздействия на клетку ряда повреждающих факторов. Однако каким образом эти повреждения трансформируются в митохондриальный апоптотический сигнал, пока в деталях не установлено.

Тем не менее достоверно известно, что первым шагом на этом пути является выход из митохондрий («энергетических фабрик» клетки) цитохрома С – небольшого белка, содержащего комплекс с железом, который является компонентом митохондриальной дыхательной цепи (Green et al., 2004).

Выход цитохрома С инициирует образование в цитоплазме клетки крупного белкового комплекса – апоптосомы, в которую, помимо самого митохондриального белка, входят прокаспаза-9 и белок АПАФ-1. Именно апоптосома и является настоящим «мафиозным боссом» митохондриального пути апоптоза, который дает сигнал киллерам-каспазам.

Речь идет об очень интересном явлении – самоактивации прокаспазы. Такое может произойти лишь в том случае, когда две молекулы этого белка, ориентированные определенным образом относительно друг друга, образуют димер.

Именно такие уникальные пространственные условия, необходимые для димеризации и каталитической активации фермента, и предоставляет прокаспазе-9 апоптосома.

Образовавшаяся в результате активная каспаза-9 расщепляет эффекторные каспазы (каспазу-3 и каспазу-7), а дальше все происходит по стандартной схеме апоптоза (Green et al., 2004).

В случае рецептор-зависимого сигнального пути инициация апоптоза начинается с другого белкового комплекса, который образуется непосредственно на самом рецепторе смерти (Krammer et al., 2007; Lavrik et al., 2005).

К настоящему времени семейство таких рецепторов включает шесть представителей, в том числе рецептор такого широко известного белка, как фактор некроза опухоли.

Все рецепторы смерти имеют одинаковый фрагмент из 80 аминокислот – так называемый домен смерти, расположенный на белковом «хвостике», выходящем в цитоплазму клетки. Такой же аминокислотный фрагмент имеет и белок-адаптер FADD, находящийся в цитоплазме клетки.

Домены смерти могут взаимодействовать между собой с образованием устойчивой связи; FADD, в свою очередь, способен присоединять к себе прокаспазу.

Вся цепь событий по образованию апоптотического комплекса запускается лигандом смерти – белком-агонистом, способным специфично связываться с рецептором смерти.

Синтез (и, соответственно, рост концентрации) таких молекул в клетке стимулируется каскадом процессов, возникающих в ответ на повреждение клетки. В результате, благодаря посредничеству FADD, на рецепторе образуется комплекс DISC (от англ.

death-inducing signaling complex), что в дословном переводе означает «сигнальный комплекс, инициирующий гибель».

Именно в этом комплексе, как и в апоптосоме, происходит самоактивация прокаспазы-8, которая, в свою очередь, активирует эффекторные каспазы (каспазу-3 и каспазу-7) и инициирует клеточную гибель (Lavrik et al., 2005; Krammer et al., 2007). Собственно говоря, на этом различия между запуском двух сигнальных путей апоптоза заканчиваются.

Жить или не жить?

Нужно отметить, что любая клетка организма постоянно подвергается многочисленным повреждающим воздействиям, таким как радиационное излучение разных типов, разнообразные химические агенты, недостаток питательных веществ и т. п.

К счастью для нас, для полноценной инициации клеточной гибели необходимо сравнительно сильное воздействие. На страже апоптотических путей стоят специфические механизмы, играющие роль «регулировщиков движения».

Эту роль играют особые белки XIAPs и FLIP (Lavrik et al., 2005).

Белки XIAPs ингибируют каспазу-9, которая активируется вследствие развертывания митохондриального пути. Связываясь с активным центром каспазы, они не дают «киллеру» выполнять свою работу.

Однако с помощью этих белков клетке удается заблокировать лишь небольшое число активных каспаз.

Если же концентрация активных каспаз превышает некий пороговый уровень, то белков XIAPs становится недостаточно, и процесс апоптоза остановить уже невозможно.

В случае рецепторзависимого сигнального пути апоптоза ингибитором активации прокаспазы-8 служит близкий ей по структуре белок FLIP.

Молекулы этого белка также могут связываться с апоптическим комплексом DISC, конкурируя за «место» с молекулами прокаспазы, – при повышенной концентрации в цитоплазме они блокируют все возможные «места» такого связывания (Krammer et al., 2007). В результате прокаспаза-8 не может быть активирована, и апоптоз не запускается.

Нарушения в уровне экспрессии как про- так и антиапоптотических белков может привести к серьезным отклонениям от обычного образа жизни клетки. Так, повышенный уровень экспрессии белков XIAPs и FLIP имеют многие раковые клетки. Выбрав курс на собст­венное бессмертие, в конечном счете они приводят к гибели все многоклеточное «сообщество» организма.

Итак, в отличие от голливудского детектива, в истории про апоптоз нет главного действующего лица: своевременное уничтожение поврежденных клеток и в итоге – жизнеспособность организма зависит от слаженной цепочки событий, в которой участвует множество различных белковых молекул.

И здесь очень важны количественные показатели, такие как концентрация. Сегодня изучением того, как влияет на инициацию и дальнейший ход апоптоза уровень содержания в клетке различных молекул, занимается одна из передовых областей современной науки – системная биология (Bentele et al., 2004).

Основной ее постулат заключается в том, что протекание сложных процессов внутри клетки можно понять, лишь учитывая максимально большое число клеточных параметров. Для этого на основе экспериментальных данных создается компьютерная модель, которая учитывает действие множества факторов.

Полученные таким образом предсказания о ходе основных клеточных процессов могут использоваться в борьбе с препятствиями человечества на пути к долгой и здоровой жизни.

Литература

Lavrik I. N., Golks A., Krammer P. H. Caspases: Pharmacological manipulation of cell death // J. Clin. Invest. 2005. V. 115, N 10. P. 2665—2672.

Krammer P. H., Arnold R., Lavrik I. N. Life and death in peripheral T cells // Nat. Rev. Immunol. 2007. V. 7. P. 532—542.

Green D. R. and Kroemer G. The pathophysiology of mitochondrial cell death // Science. 2004. V. 305. P. 626—629.

: 10 Дек 2013 , Вслед за Создателем , том 52, №4

Источник: https://scfh.ru/papers/apoptoz-zakaznoe-samoubiystvo/

Интерпретация результата анализов ВПЧ: расшифровка цитологии и гистологии | Университетская клиника

Апоптоз гистология

Интерпретация результата анализов ВПЧ

Папилломавирус человека (ВПЧ) – опасный микроорганизм, вызывающий рак шейки матки, прямой кишки, полового члена и полости рта.

Поражение ВПЧ приводит к появлению бородавок, наростов (кондилом) в интимной зоне, папиллом (висячих родинок), других поражений кожи и слизистых.

Существует ряд анализов, которые позволяют не только обнаружить возбудителя, но и выявить его тип и концентрацию. 

Это необходимо для своевременной диагностики папилломавирусной инфекции и профилактики онкологии.

Что дает анализ на ВПЧ

Учеными обнаружено более 200 типов (штаммов) вируса, 40 из которых могут поражать человеческую кожу и слизистые оболочки. Однако не все вирусы одинаково опасны. Микроорганизмы делят на две больших категории:

  • Высокоонкогенные, к которым относятся типы 16, 18,31, 33, 35, 39, 45, 51, 52, 56, 58, 59, чаще всего вызывающие рак. Самые опасные – 16 и 18, на которые приходится почти 90% случаев злокачественных опухолей шейки матки.
  • Низкоонкогенные, к которым относятся штаммы 6, 11, 40, 42, 43, 44, 54, 61, 72, 8. Однако эти возбудители вызывают кондиломы на половых органах и папилломы в гортани, которые также могут перерождаться в рак. Они могут спровоцировать и злокачественные опухоли, правда происходит это гораздо реже. Поэтому невысокая онкогенность этих возбудителей  относительна.

Вирусы, не попавшие, в эти две категории, тоже не безобидны. Они вызывают болезни кожи, сопровождающиеся бородавчатыми наростами, и даже рак в области шеи и лёгких. Однако с целью раннего выявления и предупреждения рака шейки матки наиболее ценен именно анализ на онкогенные вирусы, поскольку они представляют наибольшую опасность.

В настоящее время применяется несколько видов анализов на ВПЧ которые, можно условно разделить на группы – цитологические, гистологические, лабораторные.

Цитологические (PAP-тест)

Анализ, направленный на обнаружение клеток, появляющихся в организме в ответ на поражение папилломавирусом. Для его проведения берётся мазок с шейки матки и цервикального канала, который окрашивается в лабораторных условиях и исследуется на наличие клеток, появляющихся при заражении ВПЧ.

Мазок с шейки матки

Если вирус уже начал свою разрушительную деятельность, у женщины обнаруживается предрак – дисплазия, на которую указывают неправильно развитые (атипичные) клетки в мазке:

  • Койлоциты, имеющие деформированное, иногда увеличенное ядро и дистрофические изменения в цитоплазме. Внутри них могут находиться частицы вируса, называемые «стрелами». При начавшемся распространении папилломавируса, эти вирусные частицы встраиваются в геном клетки и подчиняют ее.
  • Дискератоциты. Клетки с признаками ороговения, которое может быть слабым или более сильным. Внутри них находится плотный белок кератин.
  • Обладающие другими признаками атипии – неправильной формой, строением, увеличенным количеством ядер, неравномерностью окраски. Иногда встречаются «голые» ядра без оболочки.
  • Атипичные парабазальные. При тяжёлой степени дисплазии в мазке обнаруживаются атипичные парабазальные клетки, находящиеся внизу – в глубине эпителия. Их появление указывает на глубокое проникновение вируса и тяжелую дисплазию.

При дальнейшем развитии болезни поражается самый нижний базальный слой, и у женщины возникает начальная стадия рака – карцинома in situ.

После этого процесс выходит за пределы эпителия, что сопровождается появлением глубокой (инвазивной) раковой опухоли. В этом случае в мазке находят раковые злокачественные клетки, значительно отличающиеся от здоровых.

По их строению врач может определить начавшееся злокачественное перерождение и тип опухоли.

Стадии рака

Цитологический анализ позволяет обнаружить предраковое и злокачественное перерождение тканей до появления симптомов болезни. Поэтому его часто применяют в качестве профилактического диагностического исследования. 

Гистологическое исследование биоптата

При проведении этого анализа исследуется материал, взятый с помощью биопсии (забора образца тканей) или полученный в ходе операций по удалению патологических образований шейки. При дисплазии и раке в образце обнаруживают атипичные клетки.

В отличие от цитологии, которая дает возможность оценить только поверхность патологического очага, гистологическое исследование позволяет проверить ткани на большую глубину. Она показывает, насколько глубоко проник патологический процесс внутрь шейки матки. Чем больше глубина, на которой находят пораженные клетки, и чем они больше изменены, тем хуже результат. 

В зависимости от этого устанавливается степень дисплазии или ставится диагноз карциномы

Гистологическое заключениеСтепень дисплазии или злокачественного пораженияГлубина поражения тканей, картина мазка
КойлоцитозПоверхностное поражениеВ тканях обнаруживают клетки-койлоциты. Количество других атипичных видов невелико
Цервикальная интраэпителиальная неоплазия стадия  CIN I, LSILЛегкое поражение тканей. Первая стадия дисплазииЭпителий поражен на 1/3 глубины, обнаруживаются различные типы атипичных клеток
Цервикальная интраэпителиальная неоплазия стадия  CIN II, НSILУмеренное поражение тканей. Вторая стадия дисплазииЭпителий поражен на 1/3-2/3 глубины. Количество атипичных клеток повышается. На смену койлоцитам приходят клетки с более серьезными изменениями, напоминающие раковые
Цервикальная интраэпителиальная неоплазия стадия  CIN III, НSILТяжелое поражение  тканей. Третья стадия дисплазииЭпителий поражен на 2/3 глубины. Обнаруживаются неправильно развитые клетки глубокого парабазального слоя эпителия
Carcinoma in situНачальная стадия рака (рак на месте)Эпителий поражен на всю глубину. В мазке, кроме атипичных клеток, появляются злокачественные, отличающиеся неправильным делением и значительными различиями со здоровыми
Инвазивный рак (плоскоклеточный или железистый)Степень поражения зависит от размера опухоли, глубины ее проникновения в ткани, наличия метастазПри обнаружении в анализах злокачественных клеток многослойного плоского эпителия, покрывающего наружную часть шейки матки, ставится диагноз карциномы или плоскоклеточного рака.При обнаружении злокачественных клеток цилиндрического (железистого) эпителия, выстилающего цервикальный канал шейки матки, ставится диагноз железистого рака (аденокарциномы).Гистологический анализ также позволяет выявить более редкие формы опухолей

Гистологический анализ назначается только при обнаружении подозрительных патологических очагов на шейке матки. Это исследование является прекрасным дополнением к цитологии, позволяющим правильно поставить диагноз.

На гистологию исследуют ткани, полученные при удалении очагов дисплазии с поверхности шейки. При правильном хирургическом лечении на их наружной поверхности не должно быть атипичных клеток. Это означает, что предраковый очаг удалён в пределах здоровой ткани.

Лабораторная диагностика

При проведении анализов, возбудителя выявляют по образцам ДНК, что позволяет обнаружить его тип.

И, хотя генетический материал каждого вида (штамма) вируса всего на 10% отличается от остальных типов ВПЧ, такой метод дает точные результаты.

Лабораторный анализ на ВПЧ делается разными способами, но все они дают практически 100% результат, обнаруживая сам вирус, и позволяя выявить его тип (штамм) и концентрацию.

Для исследования берется мазок с шейки матки, из которого извлекаются частицы ДНК вирусов, которые затем соединяются с реактивами с образованием так называемых “гибридов”. Полученные соединения обнаруживают с помощью различных лабораторных методов. Для увеличения количества материала его многократно увеличивают (амплифицируют).

При проведении некоторых лабораторных методов гибридные соединение обрабатывают специальными веществами, которые заставляют их светиться. Это свечение усиливают и регистрируют с помощью прибора люминометра.

Лабораторная диагностика

Современные методы исследования позволяют обнаруживать до 27 типов видов вирусов, Однако зачастую достаточно определение 5 самых наиболее онкогенных – 16, 18, 31, 33, 45. Именно эти возбудители чаще всего и вызывают онкологические заболевания.

Лабораторный анализ отлично подходит для скрининга (выявления) папилломавируса и оценки противовирусного лечения. Если лечебный процесс проходит правильно, концентрация возбудителя будет снижаться.

Современные методы диагностики ВПЧ позволяют:

    • Обнаружить вирус и выявить его тип. Поскольку разные типы вируса имеют различную степень опасности возникновения рака, диагностика позволяет спрогнозировать риск развития злокачественных заболеваний.
    • Определить количество вируса (вирусную нагрузку). Чем она выше, тем тяжелее протекает заболевание. Вычисление этого показателя дает возможность подобрать оптимальное противовирусное лечение.
    • Узнать, вызвало ли заражение папилломавирусом изменения на шейке матки, и определить глубину поражения тканей.
    • Обнаружить начавшийся переход предрака в рак и определить тип злокачественной опухоли, которая при этом образовалась
    • Проводить исследование – скрининг шейки матки для выявления дисплазии у женщин.
    • Оценить эффективность проведенного лечения.

Современные методы диагностики выявляют папилломавирусную инфекцию, предраковые и раковые поражения шейки матки на самых ранних стадиях. Это значительно облегчает лечение.

Поэтому, чтобы не столкнуться с запущенной дисплазией или начавшимся раком, нужно обратиться в Университетскую клинику и обследоваться на папилломавирус. Здесь можно проконсультироваться у опытных гинекологов и сдать все необходимые анализы.

В клинике имеется современное оборудование, позволяющее устранить патологии шейки матки, а также убрать другие проявления вируса – кондиломы и папилломы с интимной зоны. Лечение проводится малотравматичными методами, после которых на шейке и других тканях не остаётся заметных рубцов. Это особенно важно для женщин, которые планируют в перспективе беременность и роды. 

ссылкой:

Источник: https://unclinic.ru/interpretacija-rezultata-analizov-vpch-rasshifrovka-citologii-i-gistologii/

Апоптоз клеток: определение, механизм и биологическая роль

Апоптоз гистология

Процесс, при котором клетка может убивать сама себя, называется запрограммированной клеточной гибелью (ЗГК). Этот механизм имеет несколько разновидностей и играет важнейшую роль в физиологии различных организмов, особенно многоклеточных. Самой часто встречающейся и хорошо изученной формой ЗГК является апоптоз.

Что такое апоптоз

Апоптоз – это контролируемый физиологический процесс самоуничтожения клетки, характеризующийся поэтапным разрушением и фрагментацией ее содержимого с формированием мембранных пузырьков (апоптозных телец), впоследствии поглощаемых фагоцитами. Этот генетически заложенный механизм активируется под воздействием определенных внутренних или внешних факторов.

При таком варианте гибели клеточное содержимое не выходит за пределы мембраны и не вызывает воспаление. Нарушения в регуляции апоптоза приводят к серьезным патологиям, таким как неконтролируемые клеточные деления или дегенерация тканей.

Апоптоз представляет собой лишь одну из нескольких форм запрограммированной гибели клетки (ЗГК), поэтому отождествлять эти понятия ошибочно. К известным видам клеточного самоуничтожения относят также митотическую катастрофу, аутофагию и программированный некроз. Другие механизмы ЗГК пока не изучены.

Причины апоптоза клеток

Причиной запуска механизма запрограммированной клеточной гибели могут быть как естественные физиологические процессы, так и патологические изменения, вызванные внутренними дефектами или воздействием внешних неблагоприятных факторов.

В норме апоптоз уравновешивает процесс деления клеток, регулируя их количество и способствуя обновлению тканей. В таком случае причиной ЗГК служат определенные сигналы, входящие в систему контроля гомеостаза.

С помощью апоптоза уничтожаются одноразовые или выполнившие свою функцию клетки.

Так, повышенное содержание лейкоцитов, нейтрофилов и других элементов клеточного иммунитета по окончании борьбы с инфекцией устраняется именно за счет апоптоза.

Запрограммированная гибель является частью физиологического цикла репродуктивных систем. Апоптоз задействован в процессе оогенеза, а также способствует гибели яйцеклетки при отсутствии оплодотворения.

Классическим примером участия апоптоза клеток в жизненном цикле вегетативных систем является осенний листопад. Сам термин происходит от греческого слова apoptosis, что буквально переводится как “опадание”.

Апоптоз играет важнейшую роль в эмбриогенезе и онтогенезе, когда в организме сменяются ткани и атрофируются определенные органы. Примером могут служить исчезновение перепонок между пальцами конечностей некоторых млекопитающих или отмирание хвоста при метаморфозе лягушки.

Апоптоз может быть спровоцирован накоплением дефектных изменений в клетке, возникших в результате мутаций, старения или ошибок митоза.

Причиной запуска ЗГК могут быть неблагоприятная среда (недостаток питательных компонентов, дефицит кислорода) и патологические внешние воздействия, опосредованные вирусами, бактериями, токсинами и т. д.

При этом если повреждающий эффект слишком интенсивен, то клетка не успевает осуществить механизм апоптоза и погибает в результате развития патологического процесса – некроза.

Процесс апоптоза характеризуется определенным набором морфологических изменений, которые с помощью микроскопии можно наблюдать в препарате ткани in vitro.

К основным признакам, характерным для апоптоза клеток, относят:

  • перестраивание цитоскелета;
  • уплотнение клеточного содержимого;
  • конденсацию хроматина;
  • фрагментацию ядра;
  • уменьшение объема клетки;
  • сморщивание контура мембраны;
  • образование пузырьков на клеточной поверхности,
  • деструкцию органоидов.

У животных эти процессы завершаются образованием апоптоцитов, которые могут быть поглощены как макрофагами, так и соседними клетками ткани. У растений формирования апоптозных телец не происходит, а после деградации протопласта сохраняется остов в виде клеточной стенки.

Помимо морфологических изменений, апоптоз сопровождается рядом перестроек на молекулярном уровне. Происходит повышение липазной и нуклеазной активностей, которые влекут за собой фрагментацию хроматина и многих белков. Резко увеличивается содержание сАМФ, изменяется структура клеточной мембраны. В растительных клетках наблюдается образование гигантских вакуолей.

Чем апоптоз отличается от некроза

Главное различие между апоптозом и некрозом заключается в причине клеточной деградации. В первом случае источником разрушения служат молекулярные инструменты самой клетки, которые работают под строгим контролем и требуют затрат энергии АТФ. При некрозе происходит пассивное прекращение жизнедеятельности из-за внешнего повреждающего воздействия.

Апоптоз – это естественный физиологический процесс, сконструированный таким образом, чтобы не вредить окружающим клеткам. Некроз – это неконтролируемое патологическое явление, возникающее в результате критических повреждений. Поэтому неудивительно, что механизм, морфология и последствия апоптоза и некроза во многом противоположны. Однако имеются и общие черты.

Характеристика процессаАпоптозНекроз
объем клеткиуменьшаетсяувеличивается
целостность мембранысохраняетсянарушается
воспалительный процессотсутствуетразвивается
энергия АТФзатрачиваетсяне используется
фрагментация хроматинаимеетсяприсутствует
резкое падение концентрации АТФестьесть
итог процессафагоцитозвыброс содержимого в межклеточное пространство

В случае повреждения клетки запускают механизм запрограммированной гибели в том числе для того, чтобы не допустить некротического развития. Однако недавние исследования показали, что существует иная непатологическая форма некроза, которую также отнесли к ЗГК.

Биологическое значение апоптоза

Несмотря на то что апоптоз приводит к клеточной гибели, его роль для поддержания нормальной жизнедеятельности всего организма очень велика. Благодаря механизму ЗГК осуществляются следующие физиологические функции:

  • поддержание баланса между пролиферацией и смертью клеток;
  • обновление тканей и органов;
  • устранение дефектных и “старых” клеток;
  • защита от развития патогенного некроза;
  • смена тканей и органов при эмбрио- и онтогенезе;
  • удаление ненужных элементов, выполнивших свою функцию;
  • устранение клеток, нежелательных или опасных для организма (мутантных, опухолевых, зараженных вирусом);
  • предотвращение развития инфекции.

Таким образом, апоптоз является одним из способов поддержания клеточно-тканевого гомеостаза.

У растений апоптоз часто запускается, чтобы блокировать распространение инфицирующих ткани паразитических агробактерий.

То, что происходит с клеткой при апоптозе, является результатом сложной цепочки молекулярных взаимодействий между различными ферментами. Реакции проходят по типу каскада, когда одни белки активируют другие, способствуя постепенному развитию сценария гибели. Этот процесс можно разделить на несколько этапов:

  1. Индукция.
  2. Активация проапоптических белков.
  3. Активация каспаз.
  4. Разрушение и перестройка клеточных органелл.
  5. Формирование апоптоцитов.
  6. Подготовка клеточных фрагментов к фагоцитозу.

Синтез всех компонентов, необходимых для запуска, реализации и контроля каждого этапа заложен генетически, почему апоптоз и называют запрограммированной гибелью клетки. Активация этого процесса находится под строгим контролем регуляторных систем, включающих в том числе и различные ингибиторы ЗГК.

Молекулярные механизмы апоптоза клетки

Развитие апоптоза обуславливается совокупным действием двух молекулярных систем: индукционной и эффекторной. Первый блок отвечает за контролируемый запуск ЗГК.

В него входят так называемые рецепторы смерти, Cys-Asp-протеазы (каспазы), ряд митохондриальных компонентов и проапоптических белков.

Все элементы индукционной фазы можно разделить на тригеры (участвуют в индукции) и модуляторы, обеспечивающие трансдукцию сигнала смерти.

Эффекторную систему составляют молекулярные инструменты, обеспечивающие деградацию и перестройку клеточных компонентов. Переход между первой и второй фазами осуществляется на этапе протеолитического каспазного каскада. Именно за счет компонентов эффекторного блока происходит гибель клетки при апоптозе.

Факторы апоптоза

Структурно-морфологические и биохимические изменения при апоптозе осуществляются определенным набором специализированных клеточных инструментов, среди которых наиболее важными являются каспасы, нуклеазы и мембранные модификаторы.

Каспазы – группа ферментов, разрезающих пептидные связи по остаткам аспарагина, фрагментируя белки на крупные пептиды. До начала апоптоза присутствуют в клетке в неактивном состоянии из-за ингибиторов. Главной мишенью каспаз являются ядерные белки.

Нуклеазы – ответственны за разрезание молекул ДНК. Особо важна в развитии апоптоза активная эндонуклеаза CAD, разрывающая участки хроматина в областях линкерных последовательностей. В результате образуются фрагменты длиной 120-180 нуклеотидных пар. Комплексное воздействие протеолитических каспаз и нуклеаз приводит к деформации и фрагментации ядра.

Модификаторы клеточной мембраны – нарушают асимметричность билипидного слоя, превращая его в мишень для фагоцитирующих клеток.

Ключевая роль в развитии апоптоза принадлежит каспазам, которые поэтапно активируют все последующие механизмы деградации и морфологической перестройки.

Роль каспаз в клеточной гибели

Семейство каспаз включает 14 белков. Часть из них не задействована в апоптозе, а остальные подразделяются на 2 группы: инициаторные (2, 8, 9, 10, 12) и эффекторные (3, 6 и 7), которые иначе называются каспазами второго эшелона.

Все эти белки синтезируются в виде предшественников – прокаспаз, активируемых протеолитическим расщеплением, суть которого состоит в отсоединении N-концевого домена и разделении оставшейся молекулы на две части, в последствии ассоциирующиеся в димеры и тетрамеры.

Инициаторные каспазы необходимы для активации эффекторной группы, которая проявляет протеолитическую активность в отношении различных жизненно важных клеточных белков. К субстратам каспаз второго эшелона относятся:

  • ферменты репарации ДНК;
  • игибитор белка р-53;
  • поли-(ADP-рибозо)-полимераза;
  • ингибитор ДНК-азы DFF (разрушение этого белка приводит к активации эндонуклеазы CAD) и др.

Общее количество мишеней эффекторных каспаз насчитывает более 60 белков.

Ингибирование апоптоза клеток еще возможно на стадии активации инициаторных прокаспаз. Когда эффекторные каспазы вступают в действие, процесс становится необратимым.

Пути активации апоптоза

Передача сигнала для запуска апоптоза клетки может быть осуществлена двумя путями: рецепторным (или внешним) и митохондриальным. В первом случае процесс активируется через специфические рецепторы смерти, воспринимающие внешние сигналы, которыми служат белки семейства TNF (фактора некроза опухолей) или Fas-лиганды, расположенные на поверхности Т-киллеров.

В состав рецептора входит 2 функциональных домена: трансмембранный (предназначенный для связи с лигандом) и ориентированный внутрь клетки “домен смерти”, индуцирующий апоптоз. Механизм рецепторного пути основывается на образовании DISC-комплекса, активирующего инициаторные каспазы 8 или 10.

Сборка начинается со взаимодействия домена смерти с внутриклеточными адапторными белками, которые, в свою очередь, связывают инициаторные прокаспазы. В составе комплекса последние превращаются в функционально-активные каспазы и запускают дальнейший апоптозный каскад.

Механизм внутреннего пути основан на активации протеолитического каскада особыми митохондриальными белками, выброс которых контролируется внутриклеточными сигналами. Выход компонентов органоидов осуществляется через образование огромных пор.

Особая роль в запуске принадлежит цитохрому с. Попадая в цитоплазму, этот компонент электротранспортной цепи связывается с белком Apaf1 (апоптотический фактор активации протеаз), что приводит к активации последнего. Затем Apaf1 связывают инициаторные прокаспазы 9, которые по механизму каскада запускают апоптоз.

Контроль внутреннего пути осуществляется особой группой белков семейства Bcl12, которые регулируют выход межмембранных компонентов митохондрий в цитоплазму. В составе семейства имеются как проапоптические, так и антиапоптические белки, баланс между которыми и определяет, будет ли запущен процесс.

К одним из мощных факторов, запускающих апоптоз по митохондриальному механизму, относятся реактивные формы кислорода. Еще одним значимым индуктором является белок р53, который активирует митохондриальный путь при наличии ДНК-повреждений.

Иногда запуск апоптоза клеток сочетает в себе сразу два пути: как внешний, так и внутренний. Последний обычно служит для усиления рецепторной активации.

Источник: https://FB.ru/article/383042/apoptoz-kletok-opredelenie-mehanizm-i-biologicheskaya-rol

Апоптоз и некроз

Апоптоз гистология

Завершающим этапом повреждений тканей организма является их гибель. Однако сами повреждения связаны не только с патологическими процессами, возникающими в организме, но и со старением функционирующих биологических структур. Вместе с тем механизмы гибели клеток и тканей в условиях нормы и в условиях патологии значительно отличаются друг от друга и имеют разное морфологическое выражение.

АПОПТОЗ

Апоптоз — физиологическая гибель клеток в живом организме.

Общая характеристика.

Все ткани организма имеют свой срок жизни, после истечения которого и прекращения функции они должны погибнуть и на их месте появляются новые, аналогичные погибшим, клетки и ткани. Сроки жизни у разных живых структур различны. Они определены в их геноме, т. е. генетически запрограммированы.

Поэтому апоптоз является генетически запрограммированной гибелью клеток. Это важнейший физиологический процесс, позволяющий организму постоянно сохранять функции своих структур на определенном уровне.

Кроме того, в процессе образования новых клеток и внеклеточных структур возникают генетические ошибки, происходят мутации и появляются клетки, отличающиеся от клеток организма.

Они должны быть немедленно уничтожены, и их гибель также осуществляется с помощью апоптоза, который является и механизмом генетического контроля синтеза веществ и клеток организма.

Таким образом, апоптоз как физиологический процесс протекает непрерывно на протяжении всей жизни человека, и биологический смысл его заключается в поддержании постоянства клеток и тканей организма, т. е. тканевого гомеостаза. С помощью апоптоза происходит инволюция органов и тканей после завершения ими своих физиологических функций, например атрофия вилочковой железы после окончания формирования иммунной системы, атрофия половой системы женщин после завершения детородной функции, атрофия органов и тканей при старении человека и др.

Вместе стем апоптоз может развиваться и в условиях патологии — в тех случаях, когда повреждающие факторы действуют на гены, контролирующие включение программы апоптоза.

Обычно это происходит с помощью определенных веществ — цитокинов, различных факторов роста, гормонов, активизирующихся при заболеваниях и функционирующих на молекулярном уровне. Эту особенность апоптоза нередко пытаются использовать в клинике.

Например, в онкологии постоянно идет поиск возможностей стимулировать апоптоз в злокачественных опухолях с тем, чтобы активизировать распад опухолевых клеток, и это весьма перспективный путь онкотерапии.

Морфология апоптоза.

Апоптоз развивается в отдельных клетках, которые вначале теряют контакты с соседними клетками, затем уменьшаются в размерах, в их ядрах конденсируется хроматин. ядра становятся изрезанными, плотными и фрагментируются на отдельные глыбки. Одновременно происходит распад цитоплазмы, в которой сохраняются в конденсированной форме внутриклеточные структуры.

В результате клетка распадается на апоптозные тельца, каждое из которых окружено мембраной. Апоптозные тельца очень быстро поглощаются окружающими клетками, иногда макрофагами. Однако в ответ на апоптоз никогда не развивается воспалительная реакция и на месте погибших клеток воспроизводятся клетки той же ткани.

Следует подчеркнуть, что апоптозу подвергаются лишь клетки, но не ткани в целом.

НЕКРОЗ

Некроз — гибель клеток и тканей в результате патологических воздействий.

Причины некроза разнообразны, однако их можно объединить в пять групп:

  1. травматический некроз, который является результатом прямого действия на ткань физических или химических факторов (механических, температурных, радиационных, кислот, щелочей и др.);
  2. токсический некроз развивается при действии на ткани токсических факторов бактериальной или иной природы;
  3. трофоневротический некроз, который связан с нарушениями иннервации тканей при заболеваниях центральной или периферической нервной системы;
  4. аллергический некроз — следствие иммунных реакций немедленной или замедленной гиперчувствительности;
  5. сосудистый некроз, обусловленный прекращением циркуляции крови в артериях, реже — в венах.

По консистенции мертвых масс некроз может быть коагуляционным, казеозным и колликвационным.

Коагуляционный (плотный) некроз возникает при коагуляции распавшегося белка, обычно в мышечных тканях и в большинстве внутренних органов.

Разновидностью коагуляционного некроза является казеозный (творожистый) некроз, массы которого имеют замазкообразную консистенцию; развивается при некоторых видах воспаления.

Колликвационный некроз развивается в тканях, богатых жидкостью, например в головном мозге.

По механизму действия фактора, вызвавшего некроз, выделяют:

  • прямой некроз, который возникает при непосредственном действии на ткань причины, вызывающей ее гибель, — травма, токсины, высокая или низкая температура и т. п.;
  • непрямой некроз, когда причина гибели ткани связана с нарушениями функций сосудов, нервов или с аллергическими реакциями.

Некрозу предшествует период умирания, он никогда не возникает мгновенно. Период умирания может быть длительным или быстрым. В этот период в клетках и во внеклеточном матриксе развиваются изменения, представляющие собой тот или иной вид дистрофии, чаще белковый.

Эти изменения называются некробиозом, или парабиозом. Функции клеток и органов при этом ослабевают и прекращаются, но на начальных этапах процесса они могут восстановиться, если ликвидирована причина, вызвавшая некробиоз.

Если же причина продолжает действовать, дистрофия становится необратимой, некробиоз переходит в некроз и какие-либо функции прекращаются. Некротизированные ткани под действием гидролитических ферментов подвергаются разложению — аутолизу.

В области очага некроза развивается воспаление как ответная реакция организма на гибель его части.

Морфология некроза зависит от его причины, но общим является изменение цвета некротизированной ткани и ее консистенции. Цвет некротических масс зависит от наличия примесей крови и различных пигментов. Мертвая ткань бывает белой или желтоватой, нередко окружена красно-бурым венчиком.

При гнилостном расплавлении мертвая ткань издает характерный дурной запах. Микроскопические признаки некроза складываются из необратимых изменений ядер и цитоплазмы клеток. В период некробиоза клетки теряют воду, поэтому при некрозе ядра сморщиваются и уплотняются — развивается кариопикноз.

Затем нуклеиновые кислоты в виде отдельных глыбок выходят из ядра в цитоплазму клетки — происходит распад ядра — кариорексис. Наконец, ядерное вещество растворяется — наступает кариолизис. Исчезновение клеточных ядер — один из основных признаков некроза.

Та же динамика гибели наблюдается в цитоплазме, в которой развиваются плазморексис и плазмолиз. Наконец, растворяется вся клетка — происходит цитолиз.

https://www.youtube.com/watch?v=NbZ88JNofxM

При некрозе интерстициальной и сосудистой тканей экстрацеллюлярный матрикс набухает и расплавляется, волокнистые структуры подвергаются фибриноидному некрозу и уплотняются. Образовавшиеся некротические массы носят название некротический детрит.

Вокруг очага некроза, отграничивая его от живых тканей, развивается демаркационная линия, представляющая собой зону воспаления.

Эта линия имеет большое значение в хирургической практике, так как указывает на возможные пределы иссечения погибших тканей или уровень ампутации конечности.

Исходы некроза.

Благоприятный, при котором происходит ферментативное расплавление некротизированных тканей, после чего они подвергаются организации, т. е.

замещению дефекта соединительной тканью, обычно с образованием рубца, или инкапсуляции, т. е. отграничению некротизированного участка соединительной тканью.

При этом нередко некротизированные массы подвергаются петрификации. На месте колликвационного некроза образуется полость — киста.

Неблагоприятный, когда некроз ткани или органа заканчивается смертью больного, например инфаркт миокарда или некроз поджелудочной железы. Кроме того, некротизированные ткани могут подвергаться гнойному расплавлению, при котором токсичные продукты некроза и аутолиза всасываются в кровь, развивается интоксикация, которая также может привести к смерти.

Клинико-морфологические формы некроза

В зависимости от локализации и особенностей некроза выделяют его следующие клинико-морфологические формы.

Гангрена — некроз тканей, соприкасающихся с внешней средой.

При этом железо гемоглобина, находящегося в некротизированных тканях, соединяется с сероводородом воздуха и образуется сульфид железа, придающий некротизированным тканям черный цвет.

Гангрена развивается в коже, конечностях, кишечнике, легких, влагалище, матке и т. д. Имеется несколько разновидностей гангрены (рис. 12):

  • сухая гангрена развивается в тканях с малым содержанием жидкости, при этом ткани могут подвергаться мумификации. Она характерна для конечностей, возникает на разных участках тела при их отморожении, ожогах, при тяжелых инфекциях;
  • влажная гангрена обычно развивается в тканях, богатых жидкостью, поэтому встречается в легких, матке, кишечнике. У ослабленных детей, страдающих корью или скарлатиной, иногда развивается влажная гангрена щеки — нома;
  • анаэробная или газовая гангрена возникает при тяжелых, обычно массивных ранениях или травмах конечностей при попадании врану бактерий — анаэробов. Внекротизированных мышцах развивается коагуляционный некроз, они становятся грязно-серыми, при надавливании из них выделяются пузырьки газа.

Пролежень имеет трофоневротическое происхождение, возникает на участках кожи, подкожной клетчатки или слизистых оболочек.

подвергающихся давлению у ослабленных больных, страдающих онкологическими, сердечно-сосудистыми и некоторыми инфекционными заболеваниями.

Пролежни могут возникать вобласти крестца, ягодиц, пяточных костей, а также в трахее или гортани от давления трахеостомической трубки после операции трахеостомии.

Рис. 12. Гангрена. Влажная гангрена кожи бедра (а) и стопы (б); сухая гангрена стопы (в), предплечья и кисти (г).

Секвестр — участок омертвевшей ткани, свободно располагающийся среди живых тканей, обычно сопровождающийся гнойным воспалением. Особенно часто секвестром является некротизированный фрагмент кости при остеомиелите.

Рис. 13. Инфаркт. а — белые (ишемические) инфаркты селезенки; б — красные (геморрагические) инфаркты легкого; в — микроскопическая картина геморрагического инфаркта легкого; г — ишемические инфаркты почки; д — микроскопическая картина ишемического инфаркта почки. Участки некроза тканей показаны стрелками.

Инфаркт — некроз ткани внутренних органов, развивающийся в результате острого нарушения кровообращения в них при тромбозе, эмболии, длительном спазме артерий.

Наиболее яркими примерами этого вида некроза являются инфаркты миокарда, головного мозга, легких, почек, селезенки (рис. 13).

Инфаркты различают по форме и цвету, что зависит от особенностей органа и архитектоники его сосудистой системы:

  • по форме
    • —    клиновидная;
    • —    неправильная.
  • по цвету
    • —    белый;
    • —    красный;
    • —    белый с геморрагическим венчиком.

Сравнительная характеристика апоптоза и некроза

Отличия апоптоза от некроза связаны с различиями в их распространенности, генетических, биохимических, морфологических и клинических проявлениях:

  • апоптоз — физиологический вид смерти, некроз возникает в условиях патологии;
  • апоптоз генетически запрограммирован, некроз развивается под воздействием различных повреждающих причин и не связан с геномом клетки;
  • апоптоз распространяется только на отдельные клетки, некроз развивается на территории ткани и даже целого органа;
  • апоптоз не сопровождается дистрофическими изменениями клеток, некрозу предшествует дистрофия, имеющая характер некробиоза;
  • апоптоз не сопровождается воспалением, вокруг некроза обязательно развивается воспалительная реакция;
  • апоптоз заканчивается фагоцитозом апоптозных телец соседними клетками, некроз заканчивается аутолизом погибшей ткани;
  • после апоптоза восстанавливаются клетки, аналогичные погибшим, на месте некроза обычно разрастается рубцовая соединительная ткань;
  • апоптоз не сопровождается активацией внутриклеточных гидролитических ферментов, некроз развивается с помощью гидролаз;
  • апоптоз не имеет клинических проявлений, некроз сопровождается выраженной клинической симптоматикой.

Апоптоз и некроз — два разных варианта гибели клеток и тканей в живом организме, хотя некоторые патогенные факторы, способные оказывать воздействие на генетический код, могут вызывать апоптоз. Однако при этом апоптоз все-таки остается физиологическим механизмом смерти, но активизирующимся в условиях определенной патологии.

Все описанные изменения — дистрофии, апоптоз и некроз — носят характер типовых (или стереотипных) реакций, которыми организм отвечает на различные воздействия, и те или иные их сочетания возникают при любых болезнях, что необходимо учитывать при назначении лечения.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://auno.kz/patologiya/262-apoptoz-i-nekroz.html

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: