Абсолютная чувствительность зрения

Физиология и психология зрительного восприятия объема, рельефа, цвета

Абсолютная чувствительность зрения

Визуальную коммуникацию следует рассматривать, как процесс передачи информации средствами визуального языка. Это язык специальных символов, эмблем, графических и медийных элементов.

Когнитивной основой визуальной коммуникации является ее способность задействовать и стимулировать активность обоих полушарий головного мозга, позволяя не только донести целевую информацию максимально эффективным способом, но и обеспечить ее усвоение.

Как отмечал С. Л. Рубинштейн, в процессе филогенеза человек сформировался как «существо оптическое». Роль зрительных образов очень велика, ведь 75% получаемой нами информации приходится именно на зрение, которое дает нам наиболее совершенное, подлинное восприятие предметов [6].

Нечто большее

Очевидно, зрительное восприятие означает нечто большее, чем только то, что описано выше.Зрение не является пассивным восприятием. Мы получаем мир образов, рассматривая объект, анализируя его и изучая.

Зрительный процесс означает «схватывание», быстрое осознание нескольких характерных признаков объекта: прямоугольную форму книги, холодный блеск металла, прямолинейность сигареты. Несколько линий и точек легко воспринимаются как «лицо» [3].

Экспериментально выявлено, что человек осматривает объект не по случайной траектории, а как бы последовательно ощупывает взглядомнаиболее значимые элементы фигуры. Закономерные траекторииосмотра формируются только при активном взаимодействиизрительных и двигательных компонентов.

На рисунке представлена запись движения глаз при свободном рассматривании изображения в течение двух минут.

Записи движений глаз показывают, что в процессе рассматривания взор наблюдателя обычно задерживается лишь на тех элементах, которые несут сведения, позволяющие раскрыть содержание изображения.

В зависимости от содержания объекта и зрительных задач, которые стоят перед человеком в момент восприятия происходит распределение точек фиксации на объекте, последовательность, в которой взор переходит от одной точки фиксации к другой [2].

Восприятие зрительное

англ. visual perception) — совокупность процессов построения зрительного образа мира на основе сенсорной информации, получаемой с помощью зрительной системы. На ранних этапах филогенетического развития 3. в. обеспечивает получение информации в основном о пространственном положении и движении объектов.

Позднее эта информация дополняется сведениями о форме и структуре объектов. У высших млекопитающих, в т. ч. и у человека, 3. в. занимает в системе др. перцептивных процессов ведущее место (доминантность 3. в.). Наряду с задачей отражения предметов и их свойств оно выполняет также важную кинестезическую функцию (см.

Двигательный анализатор, Кинестезические ощущения), участвуя в восприятии и регуляции собственных движений наблюдателя.

Современные данные показывают, что зрение дает начало целому ряду качественно различных процессов, связанных с отражением цветовых, пространственных, динамических и фигуративных характеристик, находящихся в зрительном поле объектов.

Наиболее элементарным из них, по-видимому, является восприятие цвета.

В простейшем случае оно сводится к оценке светлоты (видимой яркости), цветового тона (собственно цвета) и насыщенности (показателя, пропорционального степени отличия цвета от серого равной светлоты) отраженного поверхностью света. Основные механизмы восприятия цвета врожденные, они локализуются на уровне подкорковых образований мозга. См. также Цветовое зрение.

3. в. пространства связано с процессами переработки пространственной информации в таких сенсорных системах, как слуховая, вестибулярная, кожно-мышечная, и является по существу интермодальным. В нем выделяются 2 группы перцептивных операций. 1 -я группа обеспечивает оценку удаленности объектов.

Важнейшей операцией этой группы является оценка удаленности на основе бинокулярного параллакса (признак глубины, связанный с различием проекций трехмерной ситуации на сетчатку левого и правого глаза) и монокулярного параллакса движения (признак, связывающий удаленность объекта с угловой скоростью его смещения при определенных движениях наблюдателя).

2-я группа операций обеспечивает оценку направления, в котором расположен тот или иной предмет. Характерно, что при этом предметное окружение выполняет роль неподвижной системы отсчета. Благодаря этому локализация объектов остается примерно неизменной во время движений наблюдателя (т. н. феномен стабильности видимого мира).

Комбинация данных об удаленности и направлении обеспечивает константное восприятие (см. Константность восприятия) величины видимых объектов. См. также Бинокулярное зрение, Глубинное зрение.

https://www.youtube.com/watch?v=GVyYBeD-bIs

Как показывают исследования, многие операции пространственного восприятия являются врожденными. Однако их координация осуществляется прижизненно. Важную роль в онтогенетическом развитии восприятия пространства играет включение отмеченных операций в состав практических, а затем и перцептивных действий.

На основе данных о пространственном положении объектов строится восприятие движения. Подобно др. видам восприятия, оно характеризуется высокой константностью: видимая скорость движущегося объекта обычно гораздо больше соответствует его абсолютной скорости, чем угловой. Константность имеет место при восприятии как реального, так и кажущегося движения.

Нейрофизиологические исследования позволили обнаружить в подкорковых образованиях и коре мозга многочисленные детекторы движения — нейроны, чувствительные к перемещению стимулов в зрительном поле (см. Нейрон-детектор).

Они участвуют в перцептивном анализе движения, а также в регуляции медленных следящих движений глаз, без которых точная оценка параметров движения предмета оказывается невозможной.

Наиболее сложным процессом 3. в. является восприятие формы. В фило- и онтогенезе оно развивается позднее восприятия движения. Восприятию формы предшествует пространственная группировка расположенных в зрительном поле однотипных элементов (см. Гештальт-психология).

Для точного отражения фигуративных характеристик предмета большое значение имеют быстрые, саккадические движения глаз, с помощью которых наблюдатель фиксирует его характерные детали, а также устанавливает их пространственные отношения.

Являясь синтезом остальных видов зрительной информации, видимая форма оказывается независимой относительно цвета, положения, ориентации и состояния движения предмета.

Отмеченные взаимоотношения, или микроструктура, процессов 3. в. проявляются в ходе его микрогенеза (см. Микрогенез восприятия). За первые 30-50 мс после предъявления стимулов осуществляется оценка пространственного положения, удаленности и абсолютных размеров.

В зависимости от расстояния, проходимого объектами за единицу времени, от 30 до 140 мс тратится на получение информации о параметрах их движения. Воспринятое ранее пространство выполняет при этом функцию интермодальной системы отсчета, а сам движущийся объект воспринимается как некоторая бесформенная и вследствие этого весьма пластичная масса.

Только после того как возникает восприятие движения объекта, начинается процесс спецификации его формы. Длительность этого процесса зависит от сложности формы.

В среднем через 300 мс после предъявления стимула процесс построения зрительного образа оказывается завершенным и приобретает свои хорошо известные характеристики: общую пространственную стабильность, подвижность локальных объектов, инвариантность видимых форм относительно цвета, пространственного положения и состояния движения. (Б. М. Величковский.)

Зрительные задачи

К зрительным задачам относятся:

  1. Обнаружение, опознание (узнавание), идентификация. При обнаружении фиксируется только наличие объекта
  2. Отнесение его к классу объектов (по обобщенным характеристикам класса)
  3. Идентификация – сравнение объекта с конкретным эталоном, хранящимся в памяти.

Также существуют уровни восприятия:

  1. Первый, низший уровень иерархической системы обобщенности признаков восприятия составляют локальные признаки, характеризующие отдельные участки контура объекта, например выпуклость, излом, длину.
  2. Следующий уровень иерархии составляют обобщенные (вторичные) признаки, характеризующие весь объект в целом, например: число углов, число вогнутостей, степень изрезанности всего контура и др.
  3. Третий уровень составляют еще более обобщенные – третичные признаки. Они характеризуют не сам контур воспринимаемого объекта, а его соотношение с контуром вспомогательного объекта, который целиком формируется мысленно. К таким признакам можно отнести удаленность объекта, его компактность, площадь.
  4. Высший уровень иерархии – признаки сходства. Они обозначаются словами: похож, напоминает, близок и содержат сведения не об одном, а о нескольких объектах в из взаимных отношениях. Они хранятся впамяти как сведения о степени качественного и количественного сходства объектов и отражают информацию не о свойствах самих объектов, а только об отношениях их свойств.[1]

Виды

Нарушение восприятия в психологии зависит от многих факторов и уровней самого восприятия.

Источник: https://gudi1991.ru/rasstrojstva/psihologiya-zritelnogo-vospriyatiya.html

Световая чувствительность

Абсолютная чувствительность зрения

Световая чувствительность является основой всех форм зрительного ощущения и восприятия. Эта функция является чрезвычайно изменчивой (лабильной) и ее изменения определяются многими причинами. Основным фактором, от которого зависит уровень абсолютной световой чувствительности, являются световые условия, в которых находится человек, или, точнее, величина яркости фона.

На световую чувствительность глаза также влияют такие факторы как:

  • распределение палочек и колбочек. Из за их неравномерного распределения периферия светоощущение периферических отделов сетчатки значительно выше, чем центральных.
  • концентрация светочувствительных зрительных веществ (зрительного пурпура) в палочках.
  • состояние нервных элементов зрительного аппарата, т.е. периферических и центральных нервных клеток и нервных волокон.
  • площадь зрачка,- при одинаковых яркости и угловых размерах испытательных полей световой поток, попадающий на сетчатку, будет меньшим при меньшей площади и большим при большей площади зрачка.

Для определения уровня световой чувствительности и ее изменений в процессе адаптации могут быть использованы многие приемы, начиная от простого наблюдения за поведением больного, до исследования с помощью специальных приборов – адаптометров и адаптопериметров.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение – порог светоощущения и способность улавливать наименьшую разницу в интенсивности освещения, что называется порогом различения.

Порог раздражения сильно зависит от предварительного освещения глаза. Так, если пробыть некоторое время в темном помещении и затем выйти на яркий свет, то наступит как бы ослепление.

Спустя некоторое время пребывания на свету глаз уже спокойно его переносит.

 И наоборот, если пробыть некоторое время на свету, а затем войти в сильно затемненное помещение, то первое время предметы совершенно неразличимы и лишь постепенно глаз привыкает к пониженному освещению.

При воздействии на глаз сильного света быстрее разрушаются зрительные вещества и, несмотря на их перманентное восстановление, чувствительность глаза к свету понижается.

В темноте распад зрительных веществ не происходит так быстро, как на свету, и, следовательно, в темноте повышается чувствительность глаза к свету.

Кроме того, при действии на сетчатку яркого света из пигментного эпителия пигмент перемещается к нейроэпителию и как бы прикрывает его, что в свою очередь снижает его чувствительность к свету. Процесс приспособления глаза к различным условиям освещения называется адаптацией.

При адаптации к свету чувствительность глаза к световому раздражителю понижается.

Понижение темновой адаптации является симптомом некоторых глазных (глаукома, сидероз, пигментная дистрофия сетчатки) и общих (болезни печени, авитаминоз А) заболеваний. Для изучения световой чувствительности и всего хода адаптации служат адаптометры.

Диагностика

При исследовании световой чувствительности производится определение световых порогов. Световые пороги могут определяться либо в относительных световых единицах (например, делениях фотоклина, площади диафрагмы, через которую проходит свет), либо в абсолютных световых единицах, которые находятся в пропорциональных отношениях к энергетическим единицам.

При определении световых порогов в абсолютных световых единицах, что всего чаще осуществляется в современных адаптометрах, пользуются единицами, кратными стильбу: нитами (нт), апостильбами (асб), пикостильбами и др.

Световая чувствительность тем выше, чем ниже световые пороги (минимальные величины светового раздражителя, которые воспринимаются).

Поэтому световая чувствительность представляет собой величину, обратную абсолютному световому порогу.

Исследование изменений световой чувствительности в ходе световой адаптации в клинической практике не применяется из-за большой скорости этого процесса. Обычно исследуют ход темновой адаптации.

Для того чтобы исследовать чувствительность определенного места сетчатки, необходимо по возможности исключить непроизвольные и произвольные движения глаз, особенно легко возникающие при погружении в темноту.

Для этого в большинстве исследований применяют так называемую фиксационную точку. В качестве фиксационной точки чаще всего употребляют светящийся объект малых размеров (1-2′), снабженный красным фильтром.

Точечный источник красного света малой яркости при фиксации его не вызывает разложения зрительного пурпура. 

В условиях темновой адаптации самая высокая световая чувствительность отмечается при раздражении областей сетчатки, расположенных между 12 и 18° от центральной ямки. Поэтому исследование световой чувствительности производят чаще всего при проецировании испытательного поля именно в эту область сетчатки.

 Исследование чувствительности только в одной области не дает полного представления о световой чувствительности, особенно при некоторых глазных заболеваниях (пигментная дегенерация сетчатки, глаукома).

Поэтому сейчас в клинике довольно часто применяют периметрическую адаптометрию, при которой световая чувствительность исследуется в разных отделах поля зрения (“квантитативная периметрия”, по Гармсу, 1957).

Для врачебной экспертизы широко применяют адаптометр, созданный проф. C.B. Кравковым и проф. H.A. Вишневским. Он позволяет ориентировочно определить состояние сумеречного (ночного) зрения при массовых обследованиях за 3-5 мин. Действие прибора основано на перемещении относительной яркости цветов в условиях дневного и пониженного освещения (феномен Пуркинье). 

При сумеречном зрении происходит перемещение максимума яркости в спектре от красной части спектра к сине-фиолетовой.

 В основе феномена Пуркинье лежит то обстоятельство, что колбочки сетчатой оболочки, функционирующие при дневном зрении, перестают функционировать при ослаблении освещения, уступая ведущее место аппарату палочек сетчатой оболочки, более чувствительному к зелено-синим лучам, которые и кажутся в этом случае относительно более яркими, чем желто-оранжевые.

Адаптометр Кравкова-Вишневского представляет собой темную камеру, внутри которой расположена таблица из зеленого, голубого, желтого и красного квадратов, освещаемая светом различной, постепенно усиливающейся яркости. Основной объект наблюдения – голубой квадрат; желтый квадрат служит для контроля.

О светоощущении можно судить по времени, которое нужно обследуемому для того, чтобы он начал различать цветные квадраты таблицы.

В начале исследования при адаптации к свету обследуемый не различает цветов и квадраты кажутся ему серыми различной светлости.

По мере наступления темновой адаптации первым различается желтый квадрат, затем – голубой. Красный и зеленый квадраты в этих условиях совсем неразличимы.

Время, прошедшее от момента включения ламп до момента, когда обследуемый увидел более светлый квадрат на месте зеленого, отмечается по секундомеру. При нормальном цветовом зрении и нормальной темновой адаптации – это время колеблется между 15-й и 60-й секундами.

Темновую адаптацию можно проверить и без адаптометра, используя таблицу Кравкова-Пуркинье. Кусок картона размером 20×20 см оклеивают черной бумагой. По углам, отступя на 3-4 см от края, наклеивают 4 квадратика размером 3×3 см из голубой, желтой, красной и зеленой бумаги. 

Цветные квадраты показывают пациенту в затемненной комнате на расстоянии 40-50 см от глаза. В норме сначала квадраты неразличимы. Через 30-40 с становится различимым контур желтого квадрата, а затем – голубого. Понижение темновой адаптации называется гемералопией. При гемералопии видят лишь один желтый квадрат.

Световые пороги А – световые пороги – арифметический ряд,В – световые пороги – геометрический ряд (логарифмы),Б – световая чув-ть – арифметический ряд,Г – световая чув-ть – геометрический ряд (логарифмы),

Везде по оси ординат отложены величины порогов или чувствительности, а по оси абсцисс – время в минутах.

Если установлено понижение сумеречного зрения, темновую адаптацию необходимо проверить на более точных адаптометрах, например на адаптометре Белостоцкого.

Прибор определяет кривую нарастания световой чувствительности глаза во время длительного (60 мин) пребывания в темноте и исследует раздельно световую чувствительность центра и периферии сетчатой оболочки в короткое (3-4 мин) время, а также определяет чувствительность адаптированного к темноте глаза к ярком свет.

Перед началом исследования темновой адаптации необходимо получить максимальную световую адаптацию Для этого обследуемый в течение 20 мин смотрит на равномерно и ярко освещенный экран. Затем пациента помещают в полную темноту (под ширму адаптометра) и определяют световую чувствительность глаз. 

Через интервалы 5 мин больному предлагают смотреть на слабо освещенный экран. По мере того как световая чувствительность нарастает, восприятие яркости постепенно снижается. С помощью диафрагмы можно достигнуть постепенного и равномерного уменьшения освещения примерно в 80 млн раз по сравнению с освещением при открытой диафрагме. Исследование проводят в течение 1 ч.

Световая чувствительность глаза быстро возрастает в темноте и через 40-45 мин достигает максимума, возрастая в 50 000-100 000 раз, а иногда и более по сравнению с чувствительностью глаза на свету. Особенно быстро темновая адаптация нарастает в первые 20 мин. 

Изменения световой чувствительности в виде кривых стали применять после работ Нагеля (Nagel, 1907) и Пипера (Piper, 1903), т. е. уже почти 60 лет. Сначала для этого применяли арифметический ряд.

Но такой способ изображения оказался неудобным потому, что колебания чувствительности при темновой и световой адаптации могут достигать нескольких десятков и даже сотен тысяч раз, что технически неудобно показать на графике.

Поскольку нарастание порогов световой чувствительности обладает огромным размахом, также удобнее представлять нарастание световой чувствительности в логарифмах чисел, обозначающих световую чувствительность. По оси абсцисс откладывают время пребывания в темноте в минутах, а по оси ординат – пороги световой чувствительности, выраженные в логарифмах.

Световая чувствительность и ход адаптации – исключительно тонкие функции, они зависят от возраста, питания, настроения, различных побочных раздражителей.

Расстройства темновой адаптации

Для того чтобы судить о патологических изменениях световой чувствительности, нужно представлять, каковы ее величины для здорового, нормального глаза.

В глазной клинике наибольшее распространение получило исследование световой чувствительности в ходе темновой адаптации.

Поэтому необходимо знать, каков уровень световой чувствительности в начале темновой адаптации и на разных ее этапах, а также ее максимальный уровень по окончании темновой адаптации.

Этот вопрос, на первый взгляд довольно простой, при ближайшем знакомстве с ним оказывается не таким очевидным. Абсолютная световая чувствительность зависит от чрезвычайно большого количества разнообразных условий и поэтому является очень лабильной функцией. Например, Н. П.

Рипак (1953) исследовал 110 здоровых лиц прибором АДМ и нашел, что максимальный уровень абсолютной световой чувствительности через 60 минут темновой адаптации варьирует в пределах от 130,000 относительных единиц до 1,400,000 единиц световой чувствительности. На этом основании, статистически обработав материал, Н. П.

Рипак установил понятие зоны нормы абсолютной световой чувствительности. Эти показатели нужно считать действительными только для аппарата данной системы и для данных условий исследования.

При работе с аппаратами других конструкций нужно всегда предварительно установить свои собственные нормативы световой чувствительности, хотя это и не является легкой задачей.

В том случае, если заболевание глаза одностороннее, то второй клинически здоровый глаз является хорошим контролем для больного глаза. Поэтому всегда рекомендуется производить исследование каждого глаза в отдельности.

Нужно также помнить, что пороги при определении абсолютной световой чувствительности несколько ниже, если исследование будет производиться бинокулярно, а не монокулярно.

Это происходит вследствие бинокулярной суммации раздражителей.

Расстройства темновой адаптации могут проявляться в виде повышения порога раздражения, т.е. светочувствительность даже при длительном пребывании в темноте остается пониженной и не достигает нормальной величины, или в виде замедления адаптации, когда светочувствительность нарастает позднее, чем в норме, но постепенно доходит до нормальной или почти нормальной величины.

Чаще встречается комбинация указанных видов расстройств. И тот и другой вид нарушения указывает на понижение световой чувствительности.

Расстройство темновой адаптации резко снижает способность ориентироваться в пространстве при пониженном освещении.

Гемералопия возможна при некоторых заболеваниях сетчатки (пигментная дистрофия, ретиниты, хориоретиниты, отслойка сетчатки) и зрительного нерва (атрофия, застойный диск), при высоких степенях близорукости. 

В этих случаях гемералопия вызвана необратимыми анатомическими дефектами в зрительно-нервном аппарате – разрушением окончаний палочек и колбочек. Понижение темновой адаптации – один из ранних признаков глаукомы. Это наблюдается и при заболеваниях печени, чаще при циррозе. В печени содержится много витамина А, ее заболевание вызывает авитаминоз А, в результате снижается тем новая адаптация. 

Кроме того, при циррозе печени в пигментном эпителии откладывается холестерин, что препятствует нормальной выработке зрительных пигментов.

Гемералопия как функциональное нарушение сетчатки может возникнуть при нарушениях питания, общем гиповитаминозе с преимущественным дефицитом витамина А.

Витамин А, как известно, необходим для выработки зрительного пурпура.

Довольно часто гемералопия сочетается с появлением на конъюнктиве глазного яблока ксеротических бляшек рядом с роговицей на уровне ее горизонтального меридиана в виде суховатых участков эпителия.

Такая гемералопия обратима и проходит довольно быстро, если в пищу вводить содержащие витамин А продукты, свежие овощи, фрукты, печень и т.д.

Источник: https://eyesfor.me/home/anatomy-of-the-eye/retina/visual-perception.html

Зрение – Психологос

Абсолютная чувствительность зрения

Зрение человека (зрительное восприятие) — процесс психофизиологической обработки изображения объектов окружающего мира, осуществляемый зрительной системой.

Общие сведения

Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук – оптики, психологии, физиологии, химии. На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы.

Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений. Так устраняются сферическая и хроматическая аберрация, эффекты слепого пятна, проводится цветокоррекция, формируется высококачественное стереоскопическое изображение и т.д.

В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии.

Цветовое зрение

У приматов (и человека) мутация вызвала появление колбочек — цветовых рецепторов.

Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях.

Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимум чувствительности которых приходится на красный, зелёный и синий участок спектра, то есть соответствует трём «основным» цветам.

Они обеспечивают распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что вызывает эффект метамерии.

Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета (См. Психология восприятия цвета). Трёхсоставную теорию цветового зрения впервые высказал в 1756 году М. В.

Ломоносов, когда он писал «о трёх материях дна ока». Сто лет спустя её развил немецкий учёный Г. Гельмгольц, который не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.

Параллельно существовала оппонентная теория цвета Эвальда Геринга. Её развили Давид Хьюбл (David H.Hubel) и Торстен Вайзел (Torsten N.Wiesel). Они получили Нобелевскую премию 1981 года за своё открытие.

Они предположили, что в мозг поступает информация вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цвета Юнга-Гельмгольца,).

Мозг получает информацию о разнице яркости — о разнице яркости белого (Yмах) и черного (Yмин), о разнице зелёного и красного цветов (G-R), о разнице и синего и жёлтого цветов (B-yellow), а жёлтый цвет (yellow=R+G) есть сумма красного и зелёного цветов, где R, G и B — яркости цветовых составляющих — красного, R, зелёного, G, и синего, B.

Имеем систему уравнений — Кч-б=Yмах-Yмин; Кgr=G-R; Кbrg=B-R-G, где Кч-б, Кgr, Кbrg — функции коэффициентов баланса белого для любого освещения. Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (цветовая адаптация).

Несмотря на кажущуюся противоречивость двух теорий, по современным представлениям, верны обе. На уровне сетчатки действует трёхстимульная теория, однако, информация обрабатывается, и в мозг поступают данные уже согласующиеся с оппонентной теорией.

Бинокулярное зрение

Бинокулярное зрение у человека, как и у других млекопинающих, а также птиц и рыб, обеспечивается наличием двух глаз, информация от которых обрабатывается сначала раздельно и параллельно, а затем синтезируется в мозгу в зрительный образ.

Благодаря тому, что поля зрения обоих глаз человека и высших приматов в значительной мере пересекаются, человек способен лучше, чем многие млекопитающие, определять внешний вид и расстояние (тут помогает также механизм аккомодации) до близких предметов в основном за счёт эффекта стереоскопичности зрения.

Стереоскопическое зрение

У многих видов, образ жизни которых требует хорошей оценки расстояния до объекта, глаза смотрят скорее вперёд, нежели в стороны. Так, у горных баранов, леопардов, обезьян обеспечивается лучшее стереоскопическое зрение, которое помогает оценивать расстояние перед прыжком. Человек также имеет хорошее стереоскопическое зрение.

Стереоскопический эффект сохраняется на дистанции приблизительно 0,1-100 метров.

Ведущий глаз

Глаза человека несколько различаются, поэтому выделяют ведущий и ведомый глаз.

Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20-30 см.) на отдалённый предмет, а затем, не смещая голову поочередно закрыть правый и левый глаз, то для ведущего глаза изображение не сместится.

Световая чувствительность человеческого глаза

Световая чувствительность оценивается величиной порога светового раздражителя.

Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Однако световая чувствительность зрения многих ночных животных (совы, грызуны) гораздо выше.

Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10 эрг/с, что эквивалентно нескольким квантам.

Чувствительность глаза зависит от полноты адаптации, от интенсивности источника света, длины волны и угловых размеров источника, а также от времени действия раздражителя. Чувствительность глаза понижается с возрастом из-за ухудшения оптических свойств склеры и зрачка, а также рецепторного звена восприятия.

Острота зрения

Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки и называется остротой зрения.

Бинокулярность

Рассматривая предмет обоими глазами, мы видим его только тогда одиночным, когда оси зрения глаз образуют такой угол сходимости (конвергенцию), при котором симметричные отчётливые изображения на сетчатках получаются в определённых соответственных местах чувствительного жёлтого пятна (fovea centralis). Благодаря такому бинокулярному зрению, мы не только судим об относительном положении и расстоянии предметов, но и воспринимаем впечатления рельефа и объёма.

Бинокулярость может нарушаться при косоглазии и некоторых других заболеваниях глаз.

При сильной усталости может наблюдаться временное косоглазие, вызванное отключением ведомого глаза.

Контрастная чувствительность

Контрастная чувствительность — способность человека видеть обьекты, слабо отличающиеся по яркости от фона. Оценка контрастной чувствительности производится по синусоидальным решеткам. Повышение порога контрастной чувствительности может быть признаком ряда глазных заболеваний, в связи с чем его исследование может применяться в диагностике.

Адаптация зрения

Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация происходит к изменениям освещённости (см. темновая адаптация), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света, см. также Баланс белого).

Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)

Психология зрительного восприятия

Зрительный аппарат – глаза и проводящие пути – настолько тесно интегрирован с мозгом, что трудно сказать, где начинается та или иная часть процесса переработки зрительной информации.

В зависимости от ситуации, человек способен “видеть” предметы, частично скрытые от глаза, например, частой решёткой. В течение одной-двух недель человек полностью адаптируется к “перевёнтутому изображению мира”, создаваемому специальными призматическими очками.

Дефекты зрения

Самый массовый недостаток — нечёткая, неясная видимость близких или удалённых предметов.

Дефекты хрусталика

Видимость предметов меняется с возрастом человека: десятилетний ребёнок видит хорошо предмет не ближе 7 см, в 45 лет — 33 см, а в 70 лет необходимы очки для рассматривания близких предметов. Так в течение жизни падает способность хрусталика менять свою кривизну, развивается дальнозоркость.

Другой дефект зрения — близорукость (миопия). Развивается близорукость от длительного напряжения зрения, связанного с недостатком освещения. Установлено, что в младших классах близоруких немного, но их становится больше в средних и старших классах. Чаще всего близорукость развивается к 16—18 годам.

Близорукость почти никогда не развивается у людей, ведущих образ жизни, требующий наблюдения отдалённых предметов (моряки и др.).

Дефекты близорукости и дальнозоркости могут быть преодолены с помощью очков.

Данный дефект зрения связан с нарушением формы хрусталика или роговицы, в результате чего человек теряет способность одинаково хорошо видеть по горизонтали и вертикали, начинает видеть предметы искажёнными, в которых одни линии чёткие, другие — размытые. Его легко диагностировать, рассматривая одним глазом лист бумаги с тёмными параллельными линиями — вращая такой лист, астигматик заметит, что тёмные линии то размываются, то становятся чётче.

У большинства людей встречается врождённый астигматизм до 0.5 диоптрий, не приносящий дискомфорта.

Данный дефект компенсируется очками с цилиндрическими линзами, имеющими различную кривизну по горизонтали и вертикали и контактными линзами, (жёсткими или мягкими торическими), также, как и очковыми линзами, имеющими разную оптическую силу в разных меридианах.

Дефекты сетчатки

Если в сетчатке глаза выпадает или ослаблено восприятие одного из трёх основных цветов, то человек не воспринимает какой-то цвет. Есть «цветнослепые» на красный, зелёный и сине-фиолетовый цвет. Редко встречается парная, или даже полная цветовая слепота.

Чаще встречаются люди, которые не могут отличить красный цвет от зелёного. Эти цвета они воспринимают как серые. Такой недостаток зрения был назван дальтонизмом — по имени английского учёного Д.

Дальтона, который сам страдал таким расстройством цветного зрения и впервые описал его.

Дальтонизм неизлечим, передаётся по наследству (сцеплен с Х-хромосомой). Иногда он возникает после некоторых глазных и нервных болезней.

Дальтоников не допускают к вождению транспорта. Очень важно хорошее цветоощущение для моряков, лётчиков, химиков, художников, поэтому для некоторых профессий цветовое зрение проверяют с помощью специальных таблиц.

Скотома — (от греч. skotos — темнота) — пятнообразный дефект в поле зрения глаза, вызванный заболеванием в сетчатке, болезнями зрительного нерва, глаукомой. Это участки (в пределах поля зрения), в которых зрение существенно ослаблено, или отсутствует.

Иногда скотомой называют слепое пятно — область на сетчатке, соответствующая диску зрительного нерва (т. н.физиологическая скотома).

  • Абсолютная скотома (absolute scotomata) — участок, в котором зрение отсутствует.
  • Относительная скотома (relative scotoma) — участок, в котором зрение значительно снижено.

Предположить наличие скотомы можно самостоятельно проведя исследование с помощью теста Амслера.

Способы улучшения зрения

Стремление улучшить зрение связано с попыткой преодолеть как дефекты зрения, так и его естественные ограничения.

В зависимости от характера и причин нарушения зрения для коррекции дефектов зрительного восприятия используют различные технические приспособления, специальные упражнения, а также несколько видов оперативного вмешательства (микрохирургия, имплантация хрусталика, лазерная коррекция зрения и др.).

Инструментальные методы

Коррекция недостатков зрения обычно осуществляется с помощью очков.

Для расширения возможностей зрительного восприятия используют также специальные приборы и методы:

Специальные упражнения

Широко пропагандируются специальные упражнения для коррекции близорукости и дальнозоркости (методы Шичко, Бейтса и т.д.). Несмотря на определённые успехи, не завершено детальное обоснование методик, недостаточно данных о границах примененимости методов (возрастные и диагностические ограничения эффективности и применимости методик).

Литература

  • Р. Грегори. Разумный глаз М., 2003
  • Грегори Р. Л. Глаз и мозг. Психология зрительного восприятия. М., 1970

Источник: https://www.psychologos.ru/articles/view/zrenie

Проверка светоощущения глаза человека (тесты)

Абсолютная чувствительность зрения

Светоощущением принято называть способность зрительного анализатора к восприятию света и различных степеней его яркости. Функция световосприятия является основной функцией глаза. Остальные функции так или иначе основываются на ней.

У простейших организмов, зрительная функция ограничивается ощущением света, который воспринимают светочувствительные клетки их наружных покровов.

На основании теории о том, что в сетчатке у дневных животных преобладают фоторецепторы колбочки, а у ночных – палочки, еще в прошлом столетии, было высказано предположение о двойственной структуре нашего зрения.

То есть колбочковая система – это аппарат дневного зрения, а палочковая, соответственно, ночного или сумеречного.

Функцию светоощущения обеспечивает работа фоторецепторов-палочек. Они чувствительны к свету во много раз больше, чем колбочки. Их наружные членики, постоянно заняты в первичных фотофизических ферментативных процессах преобразования энергии света в процессы физиологического возбуждения.

Что такое светоощущение

Глаз человека имеет способность воспринимать, как очень яркий свет, так и совсем слабый. Минимальный уровень светового потока, дающий восприятие света, принято называть порогом раздражения.

В то время, как восприятие предельной наименьшей разницы яркости между двумя освещенными объектами – порогом различения.

При этом, величины вышеназванных порогов обратно пропорциональны уровню светоощущения.

В основу процесса исследования светоощущения положено определение величины каждого из порогов, но особое значение имеет величина порога раздражения.

Величина порога раздражения может изменяться в зависимости от уровня предварительного освещения, которое действовало на глаз.

Так, если какое-то время находиться в темноте, а потом выйти к яркому свету, наступает ослепление, которое через определенное время пройдет и человек снова станет хорошо переносить яркий свет.

Либо, когда после пребывания на ярком свету, входишь в темное помещение, то различать предметы сначала совершенно невозможно. Они становятся видны лишь спустя какое-то время. Таким образом происходит адаптация зрения к различным условиям освещенности.

Световая и темновая зрительная адаптация

Световая адаптация – это процесс приспособления зрительного анализатора к условиям с более высокой освещенностью. Она протекает достаточно быстро. Из аномалий световой адаптации, известны ее расстройства, обусловленные врожденной цветослепотой. Клинически подобное нарушение проявляется, так называемой, никталопией, когда человек лучше видит в темноте или сумерках.

Темновая адаптация – это процесс приспособления зрительного анализатора к условиям пониженного освещения. Она проявляется изменением световой чувствительности после выключения света, действовавшего на глаз.

Информации о темновой адаптации намного больше и она значительно полнее, чем о световой. Ведь начало исследованиям темновой адаптации положено еще в 1865 году немецким физиологом Г.

Аубертом, который собственно и ввел термин «адаптация».

В настоящее время, о темновой адаптации известно, что максимума светочувствительности можно достичь в течение первого получаса и после 45-ти минут. То есть, когда исследуемый глаз продолжает оставаться в темноте, светочувствительность его глаз повышается.

Причем степень светочувствительности нарастает скорее, в случае, если до этого глаз был к свету менее адаптирован. В процессе световой адаптации светочувствительность может повышаться в 8-10 тыс. раз или даже более.

Исследование темновой адаптации необыкновенно важно при профессиональном отборе, а также проведении военной экспертизы.

Изучение светоощущения (тесты)

Изучение световой чувствительности, как и всего процесса зрительной адаптации проводится с помощью приборов – адаптометров. Для медицинской экспертизы, сегодня применяется адаптометр Кравкова и Вишневского. Он же используется для предварительного определения сумеречного зрения. Продолжительность исследования не превышает 3-5 минут.

Основой механизма действия прибора, является понятие феномена Пуркинье, когда при сумеречном зрении происходит перемещение наибольшей яркости в направлении от красной области спектра к сине-фиолетовой. Феномен Пуркинье более понятен на таком примере: в сумерках, цветы васильки, вместо синих, кажутся светло-серыми, в то время, как красный мак – практически черным.

Сегодня, для исследования световой адаптации зрения, также широко применяются адаптометры модели АДТ. Они позволяют всесторонне изучить состояние сумеречного зрения, в самое короткое время обеспечивая получение результатов. Кроме того, они обеспечивают исследование процесса нарастания световой чувствительности при длительном пребывании человека в темноте.

Собственно, состояние темновой адаптации легко проверить и без специального адаптометра, если использовать таблицу Кравкова-Пуркинье. Для ее изготовления, кусок картона 20х20 см необходимо оклеить черной бумагой.

Затем, по углам, отступив 3-4 см от края, наклеить четыре квадратика 3х3 см зеленой, голубой, красной и желтой бумаги.

Данную таблицу предлагают оценить испытуемому в затемненной комнате с расстояния в 40 или 50 см от глаз.

В норме, квадраты вначале неразличимы. И только спустя 30-40 секунд начинает различаться контур желтого квадрата, после этого, голубого. При сниженном светоощущении, на месте квадрата желтого цвета появляется светлое пятно, а голубой квадрат остается невидимым.

Причины снижения световой чувствительности. Гемералопия

Световая чувствительность и световая адаптация человека, зависят от разных факторов. Известно, что до 20-30 лет, световая чувствительность постепенно нарастает, а к старости неуклонно снижается.

Это объясняется возрастным ослаблением чувствительности нервных клеток в зрительных центрах. Световая чувствительность также способна ухудшаться при снижении барометрического давления из-за недостатка кислорода.

Процесс адаптации может изменяться во время менструации или беременности, при длительном голодании, изменении окружающей температуры, психических переживаниях и пр.

Ухудшение темновой адаптации, принято называть гемералопией. Гемералопия бывает врожденной и приобретенной. Врожденная патология, не нашла объяснения до сих пор. В отдельных случаях, она имеет семейную, наследственную природу.

Приобретенная же гемералопия, как правило, является одним из симптомов некоторых заболеваний глаз: пигментной дистрофии, воспалительных поражений или отслойки сетчатки, атрофии и застойного диска зрительного нерва, высоких степеней близорукости, глаукомы и пр.

Данные заболевания протекают с возникновением необратимых анатомических изменений и гемералопия лечению не подлежит. Но существует и функциональная приобретенная гемералопия, возникающая на фоне дефицита витаминов А, В2 и С.

При устранении дефицита перечисленных витаминов подобная гемералопия полностью исчезает.

Обратившись в Московскую Глазную Клинику, каждый пациент может быть уверен, что за результаты хирургического вмешательства будут ответственны высококвалифицированные рефракционные хирурги – одни из лучших российских специалистов в данной области.

Уверенности в правильном выборе, безусловно, прибавит высокая репутация клиники и тысячи благодарных пациентов.

Самое современное оборудование для диагностики и лечения заболеваний глаз, одни из лучших специалистов и индивидуальный подход к проблемам каждого пациента – гарантия высоких результатов лечения в Московской Глазной Клинике.

Уточнить стоимость той или иной процедуры, записаться на прием в “Московскую Глазную Клинику” Вы можете по телефону 8 (800) 777-38-81 (ежедневно с 9:00 до 21:00, бесплатно для мобильных и регионов РФ) или воспользовавшись формой онлайн-записи.

Источник: https://mgkl.ru/patient/stati/proverka-svetooshchushcheniya-glaza-cheloveka-testy

Ваше здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: